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Abstract 

 

Amenities that vary across cities are typically valued using either a hedonic model, in 

which amenities are capitalized into wages and housing prices, or a discrete model of household 

location choice. In this paper, we use the 2000 Public Use Microdata Sample (PUMS) to value 

climate amenities using both methods. We compare estimates of marginal willingness to pay 

(MWTP), allowing preferences for climate amenities to vary by location. We find that mean 

MWTP for warmer winters is about twice as large using the discrete choice approach as with the 

hedonic approach; mean MWTP for cooler summers is approximately the same. The two 

approaches differ, however, in their estimates of taste sorting. The discrete choice model implies 

that households with the highest MWTP for warmer winters locate in cities with the mildest 

winters, while the hedonic model does not. Differences in estimates are due to primarily to two 

factors: (1) the discrete choice model incorporates the psychological costs of moving from one’s 

birthplace, which the hedonic models do not; (2) the discrete choice model uses information on 

market shares (i.e., population) in estimating parameters, which the hedonic model does not.  
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1. Introduction 

To value amenities that vary across cities, researchers have typically followed one of two 

approaches. They have used either hedonic models of wages and housing prices (Roback 1982; 

Blomquist et al. 1988; Albouy et al. 2016) or discrete models of location choice (Cragg and 

Kahn 1997; Bayer et al. 2009; Fan et al. 2016; Sinha et al. 2018b). The former approach infers 

willingness to pay for amenities by estimating hedonic price functions for wages and housing 

costs as a function of location-specific attributes; the second, by estimating the probability that 

consumers choose a city in which to live as a function of wages, housing prices, and location-

specific attributes.  

Cragg and Kahn (1997), Bayer et al. (2009), and Sinha et al. (2018b) note that the 

discrete choice approach typically produces estimates of amenity values that are very different 

from estimates produced by the continuous hedonic approach. In a discrete choice model where 

households choose the US state in which to reside, Cragg and Kahn (1997) find the marginal 

willingness to pay for July and February temperatures exceeds the marginal prices implied by 

hedonic price functions. Bayer et al. (2009) estimate marginal willingness to pay (MWTP) to 

reduce air pollution using a discrete choice approach and find MWTP is three times greater than 

values capitalized into per capita incomes and property values. Sinha et al.’s (2018b) discrete 

choice model estimates higher damages associated with projected climate changes in US cities 

under the A2 scenario in the Special Report on Emissions Scenarios than comparable estimates 

from Albouy et al.’s (2016) hedonic model.  

While much previous research has compared the hedonic and discrete choice approaches 

in the context of a single housing market (Bayer et al. 2007; Klaiber and Phaneuf 2009, Wong 

forthcoming), valuing amenities that vary across cities introduces different issues. Hedonic 

estimates of the value of city-specific amenities involve the capitalization of amenities in both 

the labor and housing markets. An important question is whether these markets should be treated 

as national markets or city-specific markets. Moving costs across cities are one reason to 

question the assumption of national labor and housing markets. And moving costs may prevent 

city-specific amenities from being fully capitalized in wages and housing prices. Hedonic models 

typically assume perfect mobility, while moving costs are more easily incorporated into discrete 

choice models.  

In this paper, we use the same dataset to value climate amenities—specifically, winter 

and summer temperature—using hedonic and discrete choice methods. We compare estimates 

from each approach, allowing preferences for climate amenities to vary by location. Similar to 

Albouy (2012), our hedonic models regress the weighted sum of wage and housing price indices 
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on climate amenities and various city characteristics using metropolitan statistical areas (MSAs) 

as the geographic unit. Wage and housing price indices are estimated, following Albouy et al. 

(2016), assuming national labor and housing markets. We construct a weighted sum of wage and 

housing price indices for each MSA using the same weights as in Albouy et al. (2016) and, 

alternately, using a traditional set of weights (Roback 1982). We capture preference 

heterogeneity by allowing the marginal price of climate amenities to vary by city using local 

linear regressions, in the spirit of Bajari and Benkard (2005) and Bajari and Kahn (2005). 

In discrete location choice models, consumers choose among MSAs based on predicted 

wages and housing costs, moving costs from birthplace, and the same set of location-specific 

amenities as used in the hedonic models. To capture heterogeneity in preferences, we estimate 

random parameter logit models and calculate the distribution of each household’s tastes for 

climate conditional on the city in which they live. This allows us to estimate mean MWTP for 

climate amenities by city.  

We focus on prime-aged households when comparing the two approaches. Because the 

hedonic approach assumes that amenities are capitalized into wages, and because a significant 

fraction of older households have no wage income, Albouy et al. (2016) focus on workers aged 

25–55. We have estimated discrete location choice models for various age groups (Sinha et al. 

2018b) and find that preferences for climate amenities vary by the age of the household head; 

however, we focus on households with heads between 25 and 55 when comparing discrete 

choice with hedonic estimates.  

We find that the two approaches produce different estimates of mean MWTP for winter 

and summer temperature and different sorting patterns when we allow preferences to vary across 

cities. Although both approaches find that households have positive MWTP for warmer winters 

and cooler summers, mean estimates of MWTP for winter temperature produced by the discrete 

choice approach are about twice as large as estimates produced by the hedonic approach. 

Moreover, the taste sorting patterns produced by the two approaches are very different. The 

discrete choice model finds that households sort across locations based on their preferences for 

winter temperature: there is a strong positive correlation between winter temperature and MWTP 

for warmer winters. The hedonic model finds a negative correlation between MWTP for warmer 

winters and winter temperature. The discrete choice model thus projects that under most climate 

scenarios, the parts of the country that will benefit from warmer winters value this less than the 

average US household. The hedonic model with adjusted (Albouy) weights projects the opposite.  

We also explore why estimates produced by the two approaches vary. One reason is that 

the hedonic and discrete choice models differ in their underlying assumptions about consumer 
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mobility. The hedonic approach assumes perfect mobility, whereas moving costs are more easily 

incorporated in discrete models of location choice. As Bayer et al. (2009) note, moving costs—

both psychological and out-of-pocket—may prevent amenities from being fully capitalized into 

wages and housing values. When we estimate the discrete choice model without moving costs, 

the value of climate amenities falls significantly. It is also the case that moving costs, which vary 

by household and city, help identify sorting patterns in the discrete choice model (Berry and 

Haile 2010). When they are removed, sorting patterns are (incorrectly) reversed.  

A related reason for differences in the two sets of estimates is the way in which data on 

wages and housing prices are used. The hedonic model assumes a single national labor market 

and a single housing market. The data are used to estimate price indices for each MSA, assuming 

that the returns to human capital and marginal prices of housing characteristics are the same 

everywhere. The discrete choice model assumes that each MSA constitutes a separate labor and a 

separate housing market. It is the variation in wage income and housing costs across MSAs, as 

well as the variation in moving costs across MSAs, that identifies household preferences in the 

discrete choice model. This suggests that differences in how the two models use information on 

housing and labor markets may account in part for the difference in estimates.  

The paper is organized as follows. Section 2 describes the hedonic model of amenity 

valuation as originally developed by Roback (1982) and modified by Albouy (2012) and Albouy 

et al. (2016). We present the discrete location choice model that we estimate in section 3 and 

describe our data and empirical specifications in section 4. Section 5 presents the results of both 

modeling approaches. Section 6 concludes. 

2. Hedonic Models of Amenity Valuation 

2.1. The Roback and Albouy Models 

The hedonic approach to valuing location-specific amenities dates from Jennifer 

Roback’s (1982) seminal article “Wages, Rents, and the Quality of Life,” which built on Rosen’s 

(1974) model of product differentiation and implicit prices. Roback posited that in a world of 

perfectly mobile individuals, wages and land prices would adjust to equalize utility in all 

locations. Consider a world of homogeneous individuals who receive utility from housing, H, a 

traded good, C, and a location-specific amenity, a.1 In each location, j, the individual selects C 

and H to maximize utility subject to a budget constraint, 

 
1 Roback’s model deals with land, not housing. In the subsequent literature, r is treated as the rental rate on housing.  
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 max
𝐶𝑗,𝐻𝑗

𝑈(𝐶𝑗 , 𝐻𝑗; 𝑎𝑗)  𝑠. 𝑡. 𝑊𝑗 + 𝐼 = 𝑟𝑗𝐻𝑗 + 𝐶𝑗 (1) 

where rj is the rental price of housing; Wj is wage income; I is nonwage income, which is 

independent of location; and the price of the traded good, C, has been normalized to 1.2 This 

yields an indirect utility function, V(Wj, rj, aj). If individuals are perfectly mobile, locational 

equilibrium requires that utility be everywhere equal,  

 𝑉(𝑊𝑗 , 𝑟𝑗 , 𝑎𝑗) = 𝑘 (2) 

implying that housing prices and wages will adjust to equalize utility. Roback shows that the 

value to consumers of a small change in aj is given by 

 𝑀𝑊𝑇𝑃𝑎 ≡
𝑉𝑎

𝑉𝑊
= 𝐻

𝑑𝑟

𝑑𝑎
−

𝑑𝑊

𝑑𝑎
 and 

𝑀𝑊𝑇𝑃𝑎

𝑊
≡

𝑉𝑎

𝑉𝑊

1

𝑊
= 𝑠𝐻

𝑑 log 𝑟

𝑑𝑎
−

𝑑 log 𝑊

𝑑𝑎
 (3) 

where sH is the share of the consumer’s budget spent on housing.  

The literature following Roback (1982) has inferred MWTP for local amenities by 

estimating hedonic wage and property value equations. For example, Blomquist et al. (1988) use 

census data on individuals residing in different counties to estimate hourly wage (w) and housing 

expenditure (P) equations. A common econometric specification in the literature (Gyourko and 

Tracy 1991) is the semilog3 

 ln 𝑤𝑚𝑗 = 𝛾0 + 𝑿𝑚𝑗
𝑤 𝜞𝑋,0 + 𝑨𝑗𝛤𝐴,0 + 𝜈𝑚𝑗

0  (4) 

 ln 𝑃𝑖𝑗 = 𝛿0 + 𝑿𝑖𝑗
𝑃 𝜟𝑋,0 + 𝑨𝑗𝜟𝐴,0 + 𝜂𝑖𝑗

0  (5) 

where wmj is the hourly wage earned by worker m in location j; 𝑿𝑚𝑗
𝑤  is a vector measuring the 

education, experience, demographic characteristics, industry, and occupation of worker m; Pij is 

housing expenditure by household i in location j; and 𝑿𝑖𝑗
𝑃  is a vector of dwelling characteristics. 

Aj is a vector of attributes characterizing location j. In using equations (4) and (5) to infer the 

value of location-specific amenities, Blomquist et al. (1988) multiply the hourly wage by the 

average number of workers per household and the average number of hours worked per year, and 

monthly housing expenditure by 12. The two are added together to determine the impact of 

amenities; thus, implicitly, wage differentials across counties are weighted approximately three 

times as much as housing price differentials.  

 
2 It is assumed that each individual offers a single unit of labor in each location. 

3 Blomquist et al. (1988) use Box-Cox transformations of wages and housing prices, i.e., (wλ-1)/λ and (Pλ-1)/λ. They 

estimate a value of λ = 0.2 for the housing price equation and λ = 0.1 for the wage equation, in contrast to a 

logarithmic specification (λ = 0).  
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Albouy (2012) makes significant modifications to Roback’s approach. He argues that the 

weight placed on wage income is too high, relative to the cost of nontraded goods, and he 

suggests an alternate approach to estimating the value of local amenities. Nontraded goods, as 

Albouy points out, include more than housing and hence occupy a larger fraction of the 

household’s budget. At the same time, it is after-tax income that matters. This raises the weight 

placed on nontraded goods (proxied by housing) relative to wages. Second, Albouy estimates 

wage and housing price indices for each geographic area and combines them into a quality of life 

(QOL) index, using his adjusted weights. The QOL index is then regressed on site-specific 

amenities to estimate marginal amenity values.  

To elaborate, consider the utility maximization problem faced by households, where 

indirect utility depends on income (both wage and nonwage), the prices of nontraded goods, 

taxes, and the location-specific amenities in each location. The MWTP for amenity a as a 

percentage of average total income (�̅�) can be shown to be equal to the derivative of a QOL 

index, as described by equation (6), 

 
𝑀𝑊𝑇𝑃𝑎

�̅�
≡

𝜕𝑄𝑂𝐿𝑗

𝜕𝑎
= (𝑠𝐻 + 𝛾𝑠𝑂)

𝑑ln(𝑝𝑗,𝐻)

𝑑𝑎
− (1 − 𝜏)𝑠𝑤

𝑑ln(𝑤𝑗)

𝑑𝑎
 (6) 

where 𝑠𝐻 is the share of income spent on housing, 𝑠𝑂 is the share of income spent on other 

nontraded goods, 𝑠𝑤 is the share of income that comes from wages, and 𝜏 is the marginal tax 

rate. 𝛾 is the ratio of the housing price to the price of nontraded goods. The QOL index 

corresponding to (6) can be viewed as the consumption a household is willing to forgo to live in 

city j compared with living in the average city. The weights in the QOL, however, differ from 

those in Roback. The weight on housing prices now includes the share of income spent on all -

local goods, and the weight on wage income has been reduced by taxes.4  

To estimate QOL indices, Albouy et al. (2016) estimate national wage and housing price 

equations similar to (4) and (5) in two stages. Including location-specific fixed effects in the 

hourly wage and housing rent equations in the first stage yields wage and housing price indices, 

𝜆𝑗
𝑤  and 𝜆𝑗

𝑃.5  

 ln 𝑤𝑚𝑗 = 𝑿𝑚𝑗
𝑤 𝜞𝑋,1 + 𝜆𝑗

𝑤 + 𝜈𝑚𝑗
1  (4′) 

 ln 𝑃𝑖𝑗 = 𝑿𝑖𝑗
𝑃 𝜟𝑋,1 + 𝜆𝑗

𝑃 + 𝜂𝑖𝑗
1  (5′) 

 

4
 To relate this to Roback’s MWTP formulation, if we assume that housing is the only local nontraded good (𝑠𝑂 =

0), that all income comes from wages (𝑠𝑤 = 1), and that there are no income taxes (𝜏 = 0), this reduces to Roback’s 

MWTP expression in equation (3).   
5 This is similar to the approach followed by Bieri et al. (2013), who argue that estimation in two stages ensures that 

the implicit price of the amenity is not conflated with the implicit price of unobserved worker and housing attributes. 
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These indices are then used to construct the QOL index in equation (6), where 𝜆𝑗
𝑤  and 𝜆𝑗

𝑃 

from equations (4′) and (5′) replace 𝑑ln(𝑝𝑗,𝐻) and 𝑑ln(𝑤𝑗). Based on Albouy (2012), 

(𝑠𝐻 + 𝛾𝑠𝑂) = 0.33, 𝜏 = 0.32 and 𝑠𝑤 = 0.75. This yields the QOL index on the left-hand side of 

equation (7), which is then regressed on location-specific amenities. 

 𝑄𝑂𝐿𝑗 ≡ 0.33𝜆𝑗
𝑃 − 0.51𝜆𝑗

𝑤 = 𝑨𝒋𝜽 + 𝜉𝑗 (7) 

In an important paper, Albouy and coauthors (2016) apply this approach to Public Use 

Microdata Area (PUMA) level data from the 2000 census to estimate the value of changes in 

temperature in the United States. They use flexible functional forms to relate binned temperature 

data to the QOL index, while controlling for other amenities. To allow for taste sorting, they 

apply a variant of Bajari and Benkard’s (2005) local linear regression to estimate separate 

temperature coefficients for each PUMA.  Our approach differs from theirs in focusing on winter 

and summer temperature.  These are less comprehensive measures of temperature, but have an 

intuitive interpretation and capture seasonality in temperature.    

2.2. Hedonic Models That We Estimate 

We estimate two sets of hedonic models, one using traditional weights on the wage and 

housing price indices generated by equations (4ꞌ) and (5ꞌ) (i.e., the weights in equation 3) and the 

other applying the weights proposed by Albouy to the same wage and housing price indices (i.e., 

the adjusted weights in equation 7). The national wage and property value equations we estimate 

use the same set of explanatory variables as the wage and housing cost hedonic equations that 

underpin the discrete choice model described below and are estimated using the same samples of 

workers and houses. Our estimates of equations (4ꞌ) and (5ꞌ) yield price indices for 284 MSAs; 

hence, we have 284 observations for our QOL models. 

In view of the fact that we have a single cross section of data for 284 MSAs there are two 

approaches that we could take to estimating the value of winter and summer temperature using 

the hedonic approach.  One is to assume that preferences for winter and summer temperature 

(and other location-specific amenities) are homogeneous and use the data to estimate the 

preferences of a representative individual.  This would enable us to trace out MWTP for winter 

and summer temperature for the representative individual over the range of observed temperature 

values.  This is consistent with the Roback model, and is the approach taken by Albouy et al. 

(2016) in the first part of their paper.    

The other approach is to assume that preferences for temperature are heterogeneous: 

people living in North Dakota may value warmer winters differently than people in Florida.  This 

is not consistent with the Roback model, which assumes homogeneous individuals, but is 
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consistent with a model in which there is a continuum of locations and individuals’ first-order 

conditions are consistent with equations 3 and 6 above (Bajari and Benkard 2005; Bajari and 

Kahn 2005).  We believe that this is a more realistic view of the world; however, with only a 

single cross section of data, all we can hope to achieve is to estimate MWTP for winter and 

summer temperatures in the neighborhood of the temperatures observed in each city.     

To implement either approach requires estimating QOL functions using a 

semiparametric, partially linear model (Robinson 1988).  We wish to see how the QOL varies 

non-parametrically with winter (WT) and summer (ST) temperature, but because we have only a 

single cross section of data, it is important that we control for as many amenities that vary across 

cities as possible.  Specifically, we assume that  

                                    𝑄𝑂𝐿𝑗 = 𝑨𝒋𝜽 + 𝑓(𝒁𝒋) +  𝜉𝑗                    (7') 

Where 𝑨𝒋 is a vector of non-climate amenities and climate amenities other than temperature,  𝒁𝒋 

= (WTj,STj) and 𝑓 is a nonparametric function. We use Robinson’s estimator to obtain a √n-

consistent estimate of θ, θ*.6  To estimate the non-parametric part of (7'), we use a modified 

local linear regression, in the spirit of Albouy et al. (2016). We use the residuals (�̂�𝑗)  

      �̂�𝑗 = 𝑄𝑂𝐿𝑗 − 𝑨𝒋𝜽*           (7") 

where θ* is the √n-consistent Robinson estimator7, in a local linear regression with kernel 

weights, as described in equation (8).  In equation (8) Z denotes the matrix of summer and winter 

temperatures, N( ) denotes the normal distribution, b is bandwidth, and �̂�𝑧 is the sample standard 

deviation of characteristic z. This approach yields coefficients for each MSA for summer and 

winter temperature, where the notation 𝑗∗ in equation (8) emphasizes this. 

 𝞥𝑗∗ = argmin
𝞥

(�̂� − 𝒁𝞥)′𝑾(�̂� − 𝒁𝞥) (8) 

 �̂� = [�̂�𝑗]         𝑾 = [𝑑𝑖𝑎𝑔(𝐾𝑏(𝒁𝑗 − 𝒁𝑗∗))]  

 𝐾(𝑍) = ∏ 𝑁((𝑧𝑗 − 𝑧𝑗∗) �̂�𝑧⁄ )

𝑎𝑙𝑙 𝑧

  

 𝐾𝑏(𝑍) = 𝐾(𝑏) 𝑏⁄   

 
6 In the equation yj = Ajθ + f(Zj) + εj  a consistent estimator of θ can be obtained by regressing [yj – E(yj|Zj)] on 

[Aj – E(Aj|Zj)].   Robinson (1988) uses kernel estimators of these conditional expectations to obtain a consistent 

estimator of θ.   

7  In Sinha et al. (2018a) we used the residuals QOLj – Ajθ   to estimate a local linear regression, but estimated θ 

using OLS following Albouy et. al. (2016).  This yielded very different results than using the correct approach to 

handling correlation between Aj and Zj (i.e., using the Robinson estimator).  
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The estimates from equation (8) can be used to describe how MWTP for winter and summer 

temperature vary with temperature (i.e., they can used to describe how the preferences of a 

representative individual vary with temperature).  They can, alternately, be used to describe 

MWTP for winter and summer temperature in the neighborhood of the current  (WTj,STj) for 

each city, and interpreted as the outcome of taste sorting. 

3. A Discrete Choice Approach to Valuing Climate Amenities 

The discrete choice approach to amenity valuation, like the hedonic approach, assumes 

that households choose among geographic locations based on the utility they receive from each 

location, which depends on wages, housing costs, and location-specific amenities. Variation in 

wages, housing costs, and amenities across locations permits identification of the parameters of 

the household’s indirect utility function.  

One advantage of the discrete choice approach is that it allows the researcher to more 

easily incorporate market frictions, including the psychological and informational costs of 

moving. The traditional hedonic approach assumes that consumers are perfectly mobile and, 

hence, that the weighted sum of wage and housing price gradients will equal the consumer’s 

MWTP for an amenity (equation 3). Bayer et al. (2009) demonstrate that this equality fails to 

hold in the presence of moving costs, and they incorporate the psychological and informational 

costs of leaving one’s birthplace into an equilibrium model of household location choice. 

Barriers to mobility also imply that the assumption of national labor and housing markets, which 

underlies the hedonic approach, may not accurately capture wage and housing costs in different 

cities (Cragg and Kahn 1997). 

3.1. The Discrete Choice Model 

Our discrete choice model builds on the work of Bayer et al. (2009) and Cragg and Kahn 

(1997). We model household location assuming that each household selected its preferred MSA 

from the set of MSAs in the United States in 2000. Household utility depends on consumption of 

a numeraire good (the Hicksian bundle), a vector of housing characteristics and amenities, and 

the psychological costs of leaving the household head’s birthplace. Formally, household i’s 

utility from location j is given by 

 𝑈𝑖𝑗 = 𝑈𝑖(𝐶𝑖𝑗 , 𝑋𝑖𝑗
𝑃 , 𝐴𝑗 ; 𝑀𝐶𝑖𝑗 , 𝜉𝑗 , 𝜀𝑖𝑗) (9) 
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where Cij is consumption of the numeraire good, XP is a vector of housing characteristics, Aj is a 

vector of amenities observed by the researcher, and ξj is an amenity not observed by the 

researcher. MCij represents the psychological cost of moving to city j from the head of 

household’s birthplace. εij captures unobserved heterogeneity in preferences. Equation (9) is 

maximized subject to the household’s budget constraint,  

 𝑌𝑖𝑗 = 𝐶𝑖𝑗 + 𝑃𝑗(𝑋𝑖𝑗
𝑃 ) (10) 

where Yij is the sum of household i’s nonwage income, Ii, which is assumed not to vary by city, 

and the wages of all family members, Wij. Pj(XP) is the hedonic price function in city j. 

Following Sinha et al. (2018b), we assume that households consume the same bundle of housing 

characteristics in all cities and thus use 𝑃𝑖𝑗 = 𝑃𝑗(𝑋𝑖0
𝑃 ) to represent the expenditure of household i 

on housing in city j, where 𝑋𝑖0
𝑃  represents household i’s observed housing bundle.8 Substituting 

equation (10) into (9) yields the household’s indirect utility function, which we assume takes the 

form 

 𝑉𝑖𝑗 = 𝛼(𝑌𝑖𝑗 − 𝑃𝑖𝑗) + 𝑨𝑗𝜷𝑖 + 𝑀𝐶𝑖𝑗 + 𝜉𝑗 + 𝜀𝑖𝑗. (11) 

To capture preference heterogeneity, we allow the coefficients on amenities to vary 

across households.9 To predict the earnings of household workers and housing expenditure in 

locations not chosen, we estimate hedonic wage and housing price equations for each MSA, as 

described below.  

In equation (11), Yij represents income before taxes. We also estimate versions of (11) 

with income measured after taxes. Following Albouy et al. (2016), we use an average tax rate of 

32 percent. We acknowledge that this is a very simple way of modeling taxes; however, we 

adopt it to make our results comparable to Albouy et al. (2016). Ideally, we would like to 

incorporate tax rates that are MSA-specific, although this is complicated by the fact that some 

MSAs cross state boundaries.  

Moving costs capture the psychological, search, and out-of-pocket costs of leaving the 

household head’s place of origin. Seventy-five percent of households in our prime-aged sample 

(see Table 1) live in the census region in which the head was born; 69 percent live in the same 

census division. Although households have been moving to warmer weather since the Second 

World War (Rappaport 2007), family ties and informational constraints may have prevented this 

 
8 This assumption can be relaxed by estimating the model described in equations 9' - 11' below, which allows the 

housing bundle to vary across cities.  See Table A.6. 

9 In Sinha et al. (2018b), we allow the coefficient on Yij – Pij to vary across households. We also allow Yij – Pij to 

enter the utility function in quadratic form.  
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from occurring more completely. As shown in section 5.2, failure to account for these costs 

significantly alters the value attached to climate amenities.  

Following Bayer et al. (2009), we represent moving costs as a series of dummy variables 

that reflect whether city j lies outside of the state, census division, or census region in which 

household i’s head was born. Formally, 

 𝑀𝐶𝑖𝑗 = 𝜋0𝑑𝑖𝑗
𝑠𝑡𝑎𝑡𝑒 + 𝜋1𝑑𝑖𝑗

𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 + 𝜋2𝑑𝑖𝑗
𝑟𝑒𝑔𝑖𝑜𝑛

 (12) 

where dijState denotes a dummy variable that equals 1 if j is in a state that is different from the one 

in which household head i was born, dijDivision = 1 if MSA j is outside of the census division in 

which the household head was born, and dij Region

 
= 1 if MSA j lies outside of the census region in 

which the household head was born.10  

3.2. Estimation of the Discrete Choice Model 

Estimating the location choice model requires information on the wages that a household 

would earn and on the cost of housing in all MSAs. Because wages are observed only in the 

household’s chosen location, we estimate a hedonic wage equation for each MSA and use it to 

predict Wij. The hedonic wage equation for MSA j regresses the logarithm of the hourly wage 

rate for worker m in MSA j on variables (𝑿𝑚𝑗
𝑤 ), measuring the demographic characteristics—

education, experience, and industry, and occupation—of worker m. 

 ln 𝑤𝑚𝑗 = 𝛾𝑗
2 + 𝑿𝑚𝑗

𝑤 𝜞𝑗
𝑋,2 + 𝜈𝑚𝑗

2   ∀ 𝑗 = 1, … , 𝐽 (13) 

Equation (13) is identical to equation (4) above but allows the coefficients on Xw to vary 

by MSA. It is estimated using data on full-time workers in the PUMS.11 The coefficients of (13) 

are used to calculate the earnings of each worker in the sample used to estimate the discrete 

choice model, under the assumption that individuals work the same number of hours and weeks 

in all locations. Summing earnings over all individuals in each household, we obtain predicted 

household wages for household i in location j ( ijŴ ).  

 
10 Allowing moving costs to vary by marital status or by presence of children makes little difference to our results 

(see Sinha et al. 2018b).  

11 We have also estimated equation (13) allowing for nonrandom sorting (Dahl 2002). Specifically, we compute the 

probability of moving from each birthplace to current location (in terms of census divisions) conditional on each 

education group listed in Table 1 by taking the appropriate cell counts in our sample of workers (close to 3 million 

individuals). Including this probability correction term (in quadratic form) in equation (13) has minimal impact on 

our wage regression results, possibly due to the inclusion of industry and occupation indicators in the equation. 
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The cost of housing in each location is estimated based on hedonic property value 

equations for each MSA, 

 ln 𝑃𝑖𝑗 = 𝛿𝑗
2 + 𝑿𝑖𝑗

𝑃 𝜟𝑗
𝑋,2 + 𝜂𝑚𝑗

2   ∀ 𝑗 = 1, … , 𝐽 (14) 

𝑃𝑖𝑗 is the annual cost of owning house i in city j, computed as the sum of the monthly mortgage 

payment or rent and the costs of utilities, property taxes, and property insurance. 𝑿𝑖𝑗
𝑃  contains a 

dummy variable indicating whether the house was owned or rented, as well as a vector of 

dwelling characteristics. Utility costs are added both to the costs of owning a home and to rents 

because heating and cooling requirements vary with climate. We wish to separate these costs 

from climate amenities. Equation (14) is estimated separately for each MSA in our dataset. We 

predict housing expenditures for household i in city j assuming that the household purchases the 

same bundle of housing characteristics in city j as it purchases in its chosen city.  

This is clearly a strong assumption. To test its validity, we examine the mean value of 

key housing characteristics (number of bedrooms and number of rooms) and their standard 

deviation across MSAs for different household groups, characterized by income group and 

household size. The coefficient of variation for number of bedrooms and number of rooms 

within income and household size groups averages only 0.07–0.08, suggesting that households of 

similar size and income tend to live in dwellings of similar characteristics, thus supporting our 

methodology for predicting housing expenditures.  
 

As a sensitivity analysis, we estimate a location choice model that uses a housing price 

index, following Bayer et al. (2009), rather than predicting housing expenditures in each MSA. 

In Bayer et al. (2009), utility is assumed to be of the Cobb Douglas form (9′), which is 

maximized subject to (10′).12 H is housing consumption, and 𝜌𝑗 is the housing price index in city 

j. This implies that indirect utility (11′) is a function of a housing price index 𝜌𝑗 that varies across 

cities, not households.13  

 𝑈𝑖𝑗 = 𝐶𝑖𝑗
𝛼𝐶𝐻𝑖𝑗

𝛼𝐻𝑒𝑀𝐶𝑖𝑗 𝑒𝑨𝑗𝜷𝑖𝑒𝜉𝑗𝑒𝜀𝑖𝑗 (9′) 

 𝐶𝑖𝑗 + 𝜌𝑗𝐻𝑖𝑗 = 𝑌𝑖𝑗 (10′) 

 ln𝑉𝑖𝑗 = 𝛼0 + 𝛼𝑌ln𝑌𝑖𝑗 + 𝑀𝐶𝑖𝑗 − 𝛼𝐻ln𝜌𝑗 + 𝑨𝑗𝜷𝑖 +  𝜉𝑗 +  𝜀𝑖𝑗 (11′) 

 
12 In Bayer et al. (2009) the vector of amenities does not enter the utility function exponentially. 

13
 The housing price index for each MSA is the estimated MSA fixed effect in the national hedonic housing price 

equation, equation (5′). 
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The results of estimating the hedonic wage and housing market equations for all cities are 

summarized in Appendix Tables A.1 and A.2. We find, as do Cragg and Kahn (1997), that the 

coefficients in both sets of hedonic equations vary significantly across MSAs, suggesting that the 

assumption of national labor and housing markets made in hedonic studies is inappropriate.  

We estimate the discrete location choice model (equation 11) in two stages. The first is a 

mixed logit model in which the indirect utility function incorporates unobserved heterogeneity in 

preferences for winter and summer temperature, and MSA fixed effects (𝛿𝑗): 

 

 𝑉𝑖𝑗 = 𝛼(�̂�𝑖𝑗 − �̂�𝑖𝑗) + 𝑊𝑇𝑗𝛽𝑖
𝑊𝑇 + 𝑆𝑇𝑗𝛽𝑖

𝑆𝑇 + 𝑀𝐶𝑖𝑗 + 𝛿𝑗  + 𝜀𝑖𝑗 (15) 

We assume that the temperature coefficients (βWT and βST) are jointly normally distributed, with 

mean vector 𝝁 and variance-covariance matrix Σ. The elements of Σ are estimated in the first 

stage. However, since the MSA fixed effects encompass all local attributes that do not vary 

across households, the mean vector 𝝁 is contained in 𝛿𝑗, and thus, is estimated in the second 

stage (Murdock 2006). We interpret the error term εij as combining the error in predicting 

household i’s wages and housing expenditures in city j with household i’s unmeasured 

preferences for city j. Assuming that the idiosyncratic errors are independently and identically 

distributed Type I extreme value, the probability of household i selecting city j is given by the 

mixed logit model, 

 

 𝑃(𝑖 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑠 𝑗) = ∫
exp (𝑉𝑖𝑗(𝛼, 𝜷𝑖 , 𝝅))

∑ exp (𝑉𝑖𝑘(𝛼, 𝜷𝑖 , 𝝅))𝑘
𝑓(𝜷|𝝁, 𝜮)𝑑𝛽

∞

−∞

 (16) 

The parameters of equation (16) are estimated via simulated maximum likelihood techniques, 

using a choice set equal to the household’s chosen alterative and a sample of 59 alternatives from 

the set of 284 MSAs.14 

In the second stage of our model, equation (17) is estimated by ordinary least squares 

(Berry et al. 2004). 

 
14 The validity of the McFadden sampling procedure (McFadden 1978) hinges on the independence of irrelevant 

alternatives, which does not hold in the mixed logit model. Nerella and Bhat (2004) use simulated data to examine 

the effect of sampling on the empirical accuracy of parameter estimates in a mixed logit model. They suggest using 

at least one-quarter of the universal choice set in estimating a mixed logit model. We do, however, face 

computational trade-offs in estimating the mixed logit model using more than one-quarter of the universal choice set 

and a sample large enough to estimate 284 fixed effects with precision. Experiments with the size of the choice set 

indicate that increasing the size of the choice set beyond 60 MSAs does not significantly alter parameter estimates. 



14 
 

  

𝛿𝑗 = 𝑨𝒋Γ + 𝜉𝑗 (17) 

To examine how taste heterogeneity varies by location, we compute the distribution of βi 

for each household, conditioning on where the household has chosen to locate. Specifically, we 

use Bayes’ rule (Revelt and Train 1999) to derive the distribution of βi conditional on chosen 

location, household attributes, and the population distribution of β,  

 ℎ(𝛽|𝑐ℎ𝑜𝑖𝑐𝑒𝑖 , 𝑋𝑖 , 𝝁, 𝜮) =
Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑖|𝑋𝑖 , 𝛽) 𝑓(𝛽|𝝁, 𝜮) 

Pr (𝑐ℎ𝑜𝑖𝑐𝑒𝑖|𝑋𝑖 , 𝝁, 𝜮)
 (18) 

Using this conditional distribution yields an expression for mean taste parameters, 𝝁𝒊, for 

households of type 𝑋𝑖:  

 𝜇𝑖 = 𝐸(𝛽𝑖|𝑐ℎ𝑜𝑖𝑐𝑒𝑖 , 𝑋𝑖 , 𝝁, 𝜮) = ∫ 𝛽𝑖 ℎ(𝛽|𝑐ℎ𝑜𝑖𝑐𝑒𝑖 , 𝑋𝑖 , 𝝁, 𝜮)𝑑𝛽 (19) 

These household-level parameters are estimated via simulation. Taking the average over all 

households in each MSA and dividing by the coefficient on the Hicksian bundle yields average 

MWTP for all households in a given MSA. A similar method can be used to derive the 

conditional variance-covariance matrix 𝜮𝒊. 

4. Data and Empirical Specifications 

The data used to estimate our discrete choice and hedonic models come from the 5 

percent PUMS of the 2000 census as well as other publicly available data sources. 

4.1. Data Used to Estimate Hedonic Price Functions 

The variables that we include in the hedonic wage and housing price equations (equations 

4′, 5′, 13, and 14) are listed in Appendix Tables A.1 and A.2, together with coefficient estimates. 

The hedonic wage equation is estimated using all persons in the 2000 PUMS who live in an 

MSA for which we have complete amenity data and work at least 40 weeks per year and between 

30 and 60 hours per week.15 Persons who are self-employed, in the military, or in farming, 

fishing, or forestry are excluded from the sample. The housing equations are estimated using data 

on all households living in one of the 284 MSAs for which we have complete amenity data.  

 
15 There were 284 such MSAs in the continental United States in 2000, containing 80 percent of the country’s 

population. 
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4.2. Households Used to Estimate the Discrete Choice Model 

In estimating the discrete choice models, we focus on households residing in one of the 

284 MSAs for which we have complete amenity data. To be included in our sample, a household 

must be headed by a person 16 years of age or older who was born in the continental United 

States. We exclude households whose heads are in the military or are in certain occupations (e.g., 

logging, mining) that would restrict locational choices. We also eliminate households whose 

members are self-employed, because of the difficulty in predicting their wages, and drop 

households with negative values of Yij – Pij at their chosen locations.16 This leaves over 2 million 

households. A 2.5 percent sample of these households yields the 54,008 households described in 

Table 1.17 

We have estimated the discrete choice model for the full sample of households and also 

for the two subsamples described in Table 1: households with prime-aged heads (i.e., heads 

between 25 and 55) and households with heads over age 55. The results presented in this paper 

focus on households with prime-aged heads. As Table 1 indicates, 98 percent of these 

households have some labor income, and on average, 93 percent of the income of these 

households comes from wages. The hedonic approach, which uses wage and housing cost 

differentials to value amenities, is most appropriately applied to prime-aged households. Our 

results also suggest that preferences for climate amenities differ significantly between prime-

aged households and households with older heads; hence, focusing on a single demographic 

group makes for a cleaner comparison with the hedonic approach.  

4.3. Climate Variables 

Previous studies of the value of climate amenities have used various measures of climate, 

including temperature, humidity, precipitation, and sunshine. Many studies use average summer 

and winter temperatures (Graves and Mueser 1993; Cragg and Kahn 1997, 1999; Kahn 2009)18 

or annual heating and cooling degree days (Roback 1982; Blomquist et al. 1988; Gyourko and 

Tracy 1991; Albouy 2012),19 which are highly correlated with winter and summer temperatures. 

In studying the impact of climate on agriculture, health, and electricity usage, temperature has 

 
16 These households may have substantial accumulated wealth (e.g., in real property) that we cannot measure. 

17 Computational difficulties led us to use such a small sample of households. However, we have run the mixed logit 

model on different samples of this size and find the results to be sufficiently similar. 

18 Graves and Mueser (1993) and Kahn (2009) use mean January and mean July temperatures; Cragg and Kahn 

(1997, 1999) use mean February and mean July temperatures. 

19 A mean daily temperature greater than 65 degrees F results in (average temperature − 65) cooling degree days. A 

mean daily temperature less than 65 degrees results in (65 − average temperature) heating degree days. 
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been measured by the number of days in various temperature bins (Schlenker and Roberts 2009; 

Deschenes and Greenstone 2011; Barreca et al. 2016). In the context of climate amenities, Fan et 

al. (2016) use the number of days below 32 degrees and the number of days above 80 degrees, 

while controlling for mean annual temperature. Albouy et al. (2016) use binned data to examine 

the impact of temperatures above and below 65 degrees F.  

Our hedonic and discrete choice models use mean winter (December–February) and 

mean summer (June–August) temperatures, measured as climate normals for the period 1970–

2000. The advantage of mean winter and summer temperatures is that they capture seasonality, 

which annual heating and cooling degree days and temperature bins do not. Also, with the MSA 

as the unit of observation, it is asking a lot of the data to estimate the impact of temperature when 

measured as the number of days in fine temperature bins.20  

In interpreting temperature coefficients, we note that correlation between winter and 

summer temperatures and temperatures during other seasons of the year implies that winter and 

summer temperatures will pick up other temperature impacts: the correlation between mean 

winter temperature and mean March temperature is 0.98, as is the correlation between mean 

winter temperature and mean November temperature. Collinearity among mean winter, summer, 

fall, and spring temperatures, however, makes it impossible to include all four measures in our 

models.  

In the discussion that follows, we focus primarily on results for winter and summer 

temperatures; however, the hedonic and discrete choice models also include annual snowfall, 

mean summer precipitation, and July relative humidity. The climate variables in the models are 

summarized in Table 2. All variables are climate normals: the arithmetic mean of a climate 

variable computed for a 30-year period.21 Following the literature, we also include the 

percentage of possible sunshine, defined as the total time that sunshine reaches the surface of the 

earth, expressed as a percentage of the maximum amount possible from sunrise to sunset. 

4.4. Nonclimate Amenities 

The nonclimate amenity variables used in both the discrete choice and hedonic models 

are also summarized in Table 2. These include amenity measures typically used in QOL studies 

as well as variables that are likely to be correlated with climate, such as elevation, visibility, and 

 
20 Moreover, the number of days per year exceeding 80 degrees—based on climate normal for 1970–2000—is very 

small. 

21 The temperature and summer precipitation data are for the period 1970–2000. July relative humidity, annual 

snowfall, and percentage possible sunshine are measured for the period 1960–1990. 
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measures of parks and recreation opportunities. Because both sets of models are estimated using 

a single cross section of data, we attempt to avoid problems of omitted variable bias by including 

a variety of location-specific amenities in our models. 

Many QOL studies include population density as an amenity variable (Roback 1982; 

Albouy 2012) or city population (Gyourko and Tracy 1991). Population should be used with 

caution in a discrete choice model, since the model is constructed to predict the share of 

population in each city (i.e., summing the predicted probability of moving to city j across 

households yields the predicted share of population in city j). We therefore do not include 

population as an amenity but do include population density, which may proxy amenities that 

higher population density supports that are not adequately captured by other variables (e.g., 

better public transportation, restaurants, and live sporting events). We also estimate models with 

population density omitted.22  

Other (dis)amenities for which we control include air pollution (fine particulate matter, 

PM2.5), an index of violent crime, visibility (percentage of hours with visibility greater than 10 

miles), square miles of parks within the MSA, elevation measured at the population-weighted 

centroid of the MSA, and distance from the population-weighted centroid of each MSA to the 

nearest coast. We also include indices from the Places Rated Almanac (Savageau and 

D’Agostino 2000) that measure how well each city functions in terms of transportation, 

education, health, and recreation opportunities. 

4.5. Empirical Specification 

The hedonic wage and price equations we estimate are semilog functions, a form 

commonly used in the hedonic literature and used by Albouy et al. (2016) in constructing 

location-specific wage and housing price indices. When estimating QOL and discrete choice 

models (e.g., equations (7') and (17)), amenities other than winter and summer temperature enter 

the models in linear or logarithmic form.   

To examine heterogeneity in tastes for climate, we focus on winter and summer 

temperatures. In hedonic models, the residuals obtained by estimating equation (7') as a partially 

linear semiparametric model are used to estimate local linear regressions (equation 8), which 

allow MWTP for summer and winter temperatures to vary by city. In estimating discrete choice 

 
22 We recognize that ideally we would want to instrument for population density. Although we do not instrument for 

population density, we conduct sensitivity analysis by replacing population density with other variables. The results 

indicate that the MWTP estimates are robust to these alternative specifications. See Sinha et al. (2018b) for details. 
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models, we allow the coefficients on winter and summer temperatures to be random. 

Specifically, we assume that the coefficients are jointly normally distributed with variance-

covariance matrix Σ.23 We compute the distribution of these coefficients for each sample 

household, conditional on its chosen MSA, and then average the means of these location-specific 

coefficients for all households in a city to compute MSA-specific MWTP for winter and summer 

temperatures.24  

5. Estimation Results 

In the spirit of Cragg and Kahn (1997) and Bayer et al. (2009), we compare estimates of 

mean MWTP from the discrete choice and hedonic models to see whether the discrete choice 

approach yields similar mean estimates of amenity values. We are, however, also interested in 

taste sorting. From the perspective of valuing climate, it matters how MWTP for temperature 

changes varies geographically: Are households living in areas where temperatures are likely to 

increase under future climate scenarios willing to pay more (or less) than the mean for warmer 

winters or cooler summers? We approach this by measuring MWTP for temperature changes 

conditional on a household’s current location. 

5.1. Hedonic Results 

We begin by examining how climate amenities are capitalized into wages and housing 

prices, based on national hedonic price functions. Columns 1 and 2 of Table 3 present climate 

coefficients from the hedonic wage and housing price regressions estimated when the MSA wage 

and housing price indices from equations (4′) and (5′) are each regressed on the vector of city-

specific amenities.25 The last two columns of the table show the climate amenity coefficients 

obtained when the QOL indices formed from the MSA wage and housing price indices are 

regressed on a vector of amenities, following equation (7).  

Table 3 suggests that winter temperature is an amenity that is capitalized primarily into 

wages (i.e., wages are lower in MSAs with warmer winters) and summer temperature is a 

disamenity that is capitalized primarily into housing prices (i.e., housing prices are lower in 

 
23 In Sinha et al. (2018b), we allow other climate variables to have random coefficients, as well as the coefficients 

on moving costs and the Hicksian bundle. These alternative specifications have virtually no impact on mean MWTP 

for winter or summer temperature. The sorting patterns we observe for winter and summer temperatures are 

qualitatively similar to those we report below. 
24 Mean MWTP for winter temperature in an MSA is computed by averaging the means of the winter temperature 

distributions for all households in the MSA and dividing by α, the coefficient on the Hicksian bundle.  

25 The coefficients of nonclimate amenities are presented in Appendix Table A.3. 
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MSAs with hotter summers). Housing prices are higher in MSAs with more sunshine but lower 

in areas with more snowfall. At the same time, wages are lower in MSAs with more snowfall.  

The wage and housing prices indices from equations (4′) and (5′) are combined into QOL 

indices using traditional (Roback) weights (column 3) and adjusted (Albouy) weights (column 

4). Interestingly, the simple correlation between the two sets of QOL indices is low (r = 0.2), 

suggesting that the two sets of weights give very different ranking to cities.  In the QOL models 

in columns (3) and (4) winter and summer temperature enter in linear form, in order to illustrate, 

as simply as possible, the impact of the two different sets of weights in valuing local amenities.  

The Albouy weights, which assign more importance to housing prices, suggest that summer 

temperature is more of a disamenity than winter temperature is an amenity; traditional weights, 

which assign more weight to wages, assign a higher amenity value to winter temperature.  As 

Table A.3 shows, whether a city characteristic is an amenity or a disamenity may differ between 

the two sets of weights: for example, population density is an amenity using adjusted weights but 

a disamenity using traditional weights. 

We now consider how QOL varies nonparametrically with winter and summer 

temperature.  Prior to presenting the results of the local linear regression model in equation (8), 

we consider a simpler nonparametric model.  Specifically, we estimate the partially linear, semi-

parametric model in (7') allowing only one temperature variable at a time to enter the model 

nonparametrically.  We first include summer temperature in the linear portion of the model 

(effectively assuming that MWTP for summer temperature is constant and independent of 

location) and estimate f(WT).26  Then, we do the reverse, controlling for winter temperature in 

linear part of the model and estimating f(ST) nonparametrically. 

Figures 1 and 2 display the results of allowing winter and summer temperature to 

separately enter equation (7') nonparametrically.27 Figure 1 displays the results using adjusted 

(Albouy) weights and Figure 2 the results using traditional weights.28  Figures 1A and 2A 

indicate that higher winter temperature is an amenity at most, but not all temperatures:  the QOL 

index decreases with winter temperature at very low temperatures, but increases with winter 

temperature between 15 and 60 degrees.  It continues to increase after 60 degrees using adjusted 

weights, but not using traditional weights.  The QOL index increases with summer temperature 

between 60 and 65 degrees, suggesting, as do Albouy et al. (2016), that people prefer a summer 

 
26 We estimate this using the Stata Semipar command, which computes the Robinson estimator for a model in which 

only a scalar variable enters nonparametrically. 

27 The θ*coefficients from these models appear in Appendix Table A.4. 

28 The vertical axis in Figures 1 and 2 is the QOL index.  Temperature is represented on horizontal axis.  
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at 65 to a summer at 60 degrees.  The QOL index, however, decreases with summer temperature, 

for temperatures between 65 and 84 degrees, using both sets of weights. We note that the models 

estimated with adjusted weights fit the data better (see Table A.4).  As there are also a priori 

reasons for using adjusted weights (Albouy 2012), we focus, henceforth, on these results.  

Figures 3A and 3B can be used to calculate MWTP for changes in winter and summer 

temperature when both temperature variables enter equation (7′) nonparametrically.29 The 

vertical axis of each graph shows the fraction of income that would be given up for a 5-degree 

change in temperature, measured from the previous temperature.  To illustrate, in Figure 3A an 

increase in mean winter temperature from 10 to 15 degrees is worth 1% of income (or 0.2% of 

income per degree), although the effect is not significantly different from zero.30  Figure 3A 

suggests that people are willing to pay very little to increase temperature from 10 to 25 degrees 

but that MWTP for higher winter temperatures increases beyond 25 degrees. Indeed, MWTP is 

highest for an increase in temperature from 45 to 50 degrees.  At a mean income of $69,161, 

MWTP for a one-degree increase in temperature between 45 and 50 degrees is about $350 per 

degree.  MWTP declines after 50 degrees, although point estimates are less precise.    

The corresponding figure for summer temperature (Figure 3B) indicates that MWTP for 

cooler summers is positive after 65 degrees, but that people are willing to pay less to reduce 

summer temperature from 80 to 85 degrees than they are to reduce it from 75 to 80 degrees.  

An alternate way to present the impact of temperature on MWTP is from a taste sorting 

perspective—to calculate MWTP for winter temperature in each city, evaluated at the summer 

temperature in that city, and likewise for summer temperature.  These values are plotted against 

mean winter (summer) temperature, for each city, in Figures 4 and 5, to show patterns of taste 

sorting based on the hedonic model with adjusted weights.   With only 284 observations, results 

are sensitive to the bandwidth chosen for the kernel weights in equation 8.31 In general, the 

smaller the bandwidth, the greater the range of estimated MWTP values across cities. The 

MWTP for winter and summer temperatures for each city are plotted using adjusted weights in 

Figures 4 and 5 using a bandwidth of 0.7 and in Appendix Figures A.1–A.4 for both sets of 

weights using bandwidths between 0.4 and 0.9.   

 
29 The graphs in Figure 3 were produced by estimating equation (7′) using the Stata Npregress command with 

optimal bandwidths chosen by cross-validation.  

30 The estimates in the winter (summer) temperature graph have been averaged across summer (winter) 

temperatures.  To illustrate, MWTP for an increase in winter temperature from (e.g.) 15 to 20 degrees was computed 

by averaging this value across all summer temperatures. 

31 The optimal bandwidth in equation 8 should be O(n-1/q+4) where q is the number of covariates in Z (Li and Racine 

2007).  In our case  n-1/6 = 0.39.   
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In Table 4, we present summary statistics of MWTP from the local linear regressions in 

(8) using bandwidths between 0.4 and 0.9. When preferences for temperature are allowed to vary 

across cities, both hedonic models suggest that (on average) summer temperature is a greater 

disamenity than winter temperature is an amenity.  Focusing on the models using adjusted 

weights, the MWTP for warmer winters averaged across all cities is about one-third of the mean 

MWTP for cooler summers. At a bandwidth of 0.5 (0.7), mean MWTP for winter temperature is 

$189 ($174) using adjusted weights. Mean MWTP to reduce summer temperature by 1 degree is 

$558 ($536).  Table 4 also indicates that mean MWTP for summer temperature is negatively 

correlated with summer temperature (correlation coefficient ≈ -.50), which is consistent with 

Figure 3B.  MWTP for winter temperature is weakly negatively correlated with winter 

temperature, which is consistent with Figure 3A. 

Figures 4 and 5 display the sorting patterns implied by equation (8) when the hedonic 

model is estimated using Albouy weights.  Figure 4 displays MWTP for winter temperature by 

city, plotted against winter temperature; Figure 5 is the corresponding figure for summer 

temperature.  The sorting pattern for winter temperature in Figure 4 is consistent with Figure 3A.  

There is positive correlation between MWTP for winter temperature and winter temperature 

between 20 and 45 degrees, but negative correlation below 20 degrees and above 45 degrees.  

Cities in South (in the West South Central and South Atlantic regions) with a mean winter 

temperature of 45 degrees or higher have below-average MWTP for winter temperature.  Cities 

on the Pacific Coast with mean winter temperatures above 45 degrees, however, have above-

average MWTP for winter temperature.  Households who live in cold cities, in general, have 

MWTP for winter temperature that is above mean MWTP for all cities in our sample.  This 

sorting pattern suggests that households in northern latitudes—in the East and West North 

Central and New England census divisions—would be willing pay the more for the beneficial 

portion of climate change than households in Texas and Florida.  

Figure 5 indicates that for most cities with mean summer temperatures over 73 degrees 

(the sample mean) MWTP for cooler summers is above average MWTP; most cities with mean 

summer temperature below 73 degrees have a below-average MWTP for cooler summers.  Cities 

in the South Atlantic and East South Central regions have above-average MWTP to reduce 

summer temperature, as do cities in Southern California.  Cities in Pacific Northwest have 

below-average MWTP for cooler summers. 

5.2. Discrete Choice Results 

As noted above, we have estimated discrete location choice models for various 

population groups: households headed by persons between 25 and 55 (prime-aged households), 
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households whose heads are over 55, and households headed by persons 16 years of age and 

older (full sample). In comparing the discrete choice and continuous hedonic approaches, we 

focus on prime-aged households because of their strong labor-force attachment (see Table 1).  

 Table 5 presents estimates of MWTP for winter and summer temperatures based on four 

mixed logit models.32 Our base model (model M.1) controls for all the amenities in Table 2, as 

well as moving costs, and allows the coefficients on winter and summer temperatures to be 

jointly normally distributed. Model M.2 is identical to model M.1, except that income is 

measured as after-tax income. Both models suggest that on average, higher winter temperature is 

an amenity and warmer summer temperature a disamenity. Mean MWTP to reduce summer 

temperature by 1 degree is higher than mean MWTP to increase winter temperature by 1 degree 

($627 versus $518 in model M.1; $522 versus $382 in model M.2). There is, however, 

considerable variation in tastes.  

Interestingly, the coefficients on winter and summer temperatures are negatively 

correlated: most (but not all) households that prefer milder winters also prefer milder summers, 

while those that favor colder winters like hotter summers.33  The significant negative correlation 

between MWTP for winter and summer temperature (r = -0.7) gives rise to the sorting patterns 

described below.  We note that in the hedonic model with adjusted weights (Table 4), MWTP for 

winter and summer temperature are very weakly correlated (r = -0.15). 

To examine how households sort across locations in relation to their taste for winter and 

summer temperatures, we calculate the joint distribution of the coefficients of winter and 

summer temperatures for each household, conditional on the household’s choice of location. The 

means of these conditional distributions are averaged across all households in each city, divided 

by the coefficient on the Hicksian bundle, and plotted against city temperature in Figures 6 and 

7.34  

 
32 MWTPs for amenities other than winter and summer temperture are reported in Appendix Table A.5. 

33 Appendix Table A.6 explores the sensitivity of the discrete choice model to the Hicksian bundle entering equation 

(11) in quadratic form and to the use of the Cobb-Douglas utility function (equation 11′). Results are robust to these 

sensitivity analyses. 

34 When preferences for winter and summer temperatures are forced to be uncorrelated, there is a strong association 

between MSA mean MWTP for higher temperature and temperature itself: the correlation is 0.96 between MSA 

mean MWTP and winter temperature and 0.97 between MSA mean MWTP and summer temperature. It appears that 

households that live in warmer cities place higher values on both summer and winter temperatures.  
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The pattern of taste sorting is similar whether we base location decisions on income 

before or after taxes.35 Households with higher MWTP for warmer winters tend to locate in 

warmer cities: the correlation coefficient between winter temperature and mean MSA MWTP is 

0.92 in model M.1 (Figure 6A) and 0.91 in model M.2 (Figure 6B). There is, however, some 

variation in mean MWTP across cities at a given temperature. For example, at a mean winter 

temperature of 40 degrees, households in the states of Oregon and Washington have a 

willingness to pay for a warmer winter that is much higher than the MWTP of households in 

Texas. At a mean winter temperature of 50 degrees, households on the Pacific coast are willing 

to pay more for warmer winter temperature than households in the East South Central division.  

The relationship between MWTP for a 1 degree increase in summer temperature (Figures 

7A and 7B) and summer temperature is an inverted U. While MWTP for an increase in summer 

temperature is negative in all cities except 2 in the West North Central census division, 

households in the South Atlantic and Pacific divisions have the greatest MWTP to reduce mean 

summer temperature by 1 degree.36 The higher MWTP for cooler summers in Florida than in 

North Dakota does not reflect the fact that summer temperature is higher in Florida than in North 

Dakota: MWTP is the value of a small change in temperature from current temperature levels. 

The higher MWTP to reduce summer temperature reflects the fact that people living in Florida 

are in the tails of the taste distribution for both winter and summer temperature—they have a 

higher than average MWTP to increase winter temperature and a higher MWTP than average to 

reduce summer temperature—they are climate sensitive. People living in North Dakota, in 

contrast, are not very climate sensitive and have small MWTP for both winter and summer 

temperatures.  

Figures 6 and 7 suggest that, holding temperature constant, MWTP for winter and 

summer temperatures varies by region: households in the East North Central census division 

appear to find hotter summers less of a disamenity than households that have located on the 

Pacific coast. Households in the Mountain states appear to favor colder winters than households 

in the Pacific division. Some of this might appear to reflect differences in climate variables other 

than temperature, such as differences in summer humidity, precipitation, and snowfall. Our base 

 
35 Figures 6A and 7A plot results based on model M.1, while Figures 6B and 7B plot results from model M.2, which 

is based on net-of-tax income. 

36
 The correlation between mean summer temperature and MWTP for summer temperature in Figure 7B is –0.38. If 

we restrict preferences over winter and summer temperatures to be uncorrelated, we find a strong positive 

correlation between MWTP for summer temperature and the temperature of the city in which the household lives—

see footnote 34.  
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model, however, controls for summer humidity and precipitation, as well as snowfall and 

sunshine.  

Failure to control for moving costs has a large effect on the estimated value of climate 

amenities, as well as on the spatial distribution of MWTP for winter and summer temperatures. 

Model M.3 (M.4) shows the impact of dropping moving costs from the discrete choice model 

when income is measured before (after) taxes. While the mean of the distribution of MWTP for 

winter temperature remains positive, its magnitude drops by about 5 percent (15 percent). The 

mean of the distribution on the coefficient of summer temperature is even more sensitive: its 

magnitude drops by about 38 percent (35 percent) when moving costs are omitted. Table 5 also 

indicates the role that moving costs play in taste sorting: when moving costs are omitted from the 

base models, the standard deviations on the winter temperature coefficients are no longer 

statistically significant. In model M.3, the correlation coefficient between the winter and summer 

temperature coefficients switches from negative to positive in sign. Simply put, patterns of taste 

sorting are no longer identified when moving costs are removed from the discrete choice model.  

This is borne out in Figure 8, which contrasts the sorting patterns from model M.3 when 

moving costs are removed with the patterns shown in Figures 6B and 7B. The top right panel of 

Figure 8 still shows a positive correlation between mean MWTP for winter temperature and 

mean winter temperature; however, the variation is small, and all MSAs have mean MWTP 

within about $20 of each other. The bottom right panel suggests that MWTP for warmer 

summers is positively associated with summer temperature.37  Omitting moving costs makes it 

appear, incorrectly, that people sort according to summer temperature, and that people living in 

hotter areas will pay less to reduce summer temperature than those who live in locations with 

cooler summers—i.e., that people who live in Florida and Texas have a lower than average 

MWTP to reduce summer temperature. The fact is that approximately 80% of the people who 

lived in the South Atlantic and West South Central census divisions in 2000 were born there. 

But, part of the reason that they live there is that the costs of moving from their birthplace are 

high. When we ignore moving costs, it appears that people in the South actually like warmer 

summers. 

We present these results to show the importance of controlling for moving costs. Moving 

costs are highly significant in all discrete choice models and clearly belong in the models.  

 
37 Similar results obtain when using income before adjusting for taxes (see Sinha et al. (2018b), Figure 3). 
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5.3. Comparison of Hedonic and Discrete Choice Results 

When comparing the results from the hedonic model (equation (8) estimated with Albouy 

weights) and the discrete choice model (model M.2 of Table 5) estimated using the same 

underlying data, two results stand out:  The first is that mean MWTP for cooler summers, 

averaged across all 284 MSAs, is approximately the same using the two models.  Mean MWTP 

for warmer winters is about twice as high using the discrete choice model as using the hedonic 

model.    

More importantly, the hedonic and discrete choice approaches produce very different 

taste sorting patterns. The discrete choice models suggest that households sort across locations 

based on preferences for winter temperature: there is a strong positive correlation between winter 

temperature and MWTP for winter temperature in Figure 6B. The relationship between MWTP 

for winter temperature and MSA temperature resulting from hedonic model (Figure 4) is quite 

different.  The hedonic model estimates that, at mean winter temperatures below 45 degrees, 

MWTP for WT is above the average MWTP in virtually all cities; above 45 degrees, cities in 

Texas, Florida are Arizona are willing to pay less than the average MWTP for warmer winters.  

More simply put; the correlation between MWTP for winter temperature is approximately -0.40 

based on the hedonic model; whereas it is 0.96 using the discrete choice model.   

The two models also produce different sorting patterns for summer temperature.  A key 

result from the discrete choice model is that preferences for warmer summers and warmer 

winters are negatively correlated. This leads to the inverted-U sorting pattern shown in Figure 

7B. Households on the Pacific coast, which have high MWTP for warmer winters, also have a 

high MWTP for cooler summers. The same is true of households that live in the South Atlantic 

division.  Both are climate sensitive households.  In contrast, the sorting pattern produced by the 

hedonic model shows a much stronger negative slope: according to this model, households in 

Texas and Florida have the highest MWTP to avoid hotter summers, but households on the 

Pacific coast have the lowest MWTP for cooler summers. 

5.4. What Accounts for the Differences?  

Why do estimates of the amenity value of temperature differ between the two 

approaches? The discrete choice and hedonic models we have estimated differ in three ways: (1) 

the discrete choice model incorporates the psychological costs of moving from one’s birthplace, 

which the hedonic models do not; (2) the discrete choice model allows for city-specific labor and 

housing markets, rather than assuming a national market; (3) the discrete choice model uses 
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information on market shares (i.e., population), which the hedonic model does not.38 We explore 

each of these possible explanations for the differences between the results produced by the two 

models. 

If moving costs prevent amenity values from being fully capitalized into wages and 

housing prices, then failure to account for moving costs in the hedonic model should reduce 

MWTP estimates compared with those produced by the discrete choice model. Equivalently, 

removing moving costs from the discrete choice model should cause discrete choice estimates of 

MWTP to fall. This is indeed what happens in the mixed logit models. In Table 5, dropping 

moving costs reduces estimates of mean MWTP for winter and summer temperatures:  mean 

MWTP for winter temperature is about 15% lower in model M.2. than in model M.4; mean 

MWTP for summer temperature is about 35% lower.  More importantly, it is moving costs that 

identify taste sorting patterns in the discrete choice model.  Removing them reverses the taste 

sorting patterns for winter and summer temperature, as Figure 8 demonstrates.  Removing 

moving costs from the discrete choice model does not, however, cause estimates of MWTP for 

winter and summer temperature produced by the discrete choice model to mirror those produced 

by the hedonic model.   

To investigate the impact of national versus city-specific labor markets, we estimate the 

discrete choice model derived from a Cobb-Douglas utility function (equation 9´), including only 

moving costs and city-specific fixed effects (𝛿𝑗) in the first stage. The second stage of estimation 

entails regressing city fixed effects on wages, housing prices, and amenities,  

𝛿𝑗 =  𝛼𝑌ln𝑌𝑗 − 𝛼𝐻ln𝜌𝑗 + 𝑨𝑗𝜷 + 𝜉𝑗     (20) 

which we assume vary only by city. In estimating equation (20), we replace ln𝑌𝑗 by (1 – τ) 𝜆𝑗
𝑤 

and ln𝜌𝑗 by 𝜆𝑗
𝑃, the same wage and housing price indices that are used in estimating the hedonic 

model. This imposes the assumption of national labor and housing markets on the discrete choice 

model. The resulting MWTP estimates are not, however, very different from those in Table 5:  

Mean MWTP for winter temperature is $344 (s.e. = $72); for summer temperature it is -$423 

 

38 The two approaches also differ in their underlying econometric assumptions. The discrete choice approach adds a 

product-specific shock to the consumer’s utility function (εij). This “taste for product,” which is absent from the 

hedonic model, leads the discrete choice approach to have undesirable properties in the context of models of product 

choice (Ackerberg and Rysman 2005; Bajari and Benkard 2003, 2004; Berry and Pakes 2001). For example, in 

standard random utility models, the demand for each product is strictly positive at every price (Bajari and Benkard 

2003, 2004). This can lead to very large values of consumer surplus associated with a product and overstate the 

welfare loss when a product is eliminated from the market. This is not, however, an issue in the current context.  
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(s.e.=$125).  The 95 percent confidence intervals therefore overlap with those produced by the 

base discrete choice model (M.2), which assumes city-specific labor and housing markets.    

 A third difference between the two approaches arises from the fact that the discrete 

choice model uses information on market shares in estimating model parameters, which the 

hedonic model does not. This can be seen by rewriting the equation for the second-stage of the 

discrete choice model (equation 20), following Bayer et al. (2007), as 

𝛿𝑗/𝛼𝑌 + (
𝛼𝐻 

𝛼𝑌) 
)ln𝜌𝑗 − ln𝑌𝑗 = 𝑨𝑗

𝜷

𝛼𝑌
+ 𝜉𝑗 /𝛼𝑌   (21) 

where 
𝛼𝐻 

𝛼𝑌 
 is the share of income spent on housing. Equation (21) is similar to the hedonic 

equation, with the QOL index on the left-hand side adjusted by the city-specific fixed effect 𝛿𝑗. 

Given this adjustment, there is no reason why the discrete choice model should yield the same 

estimates of MWTP as the hedonic approach, provided 𝛿𝑗 varies across cities. Maximization of 

the likelihood function of the conditional logit model guarantees that each 𝛿𝑗 equates the sum of 

the probabilities that each household chooses city j to the number of households in the sample 

that actually choose that city. Although 𝛿𝑗 will also be influenced by other variables that enter 

the first stage of estimation, 𝛿𝑗 will reflect the number of households living city j; under random 

sampling, this will be proportional to city population.39 The use of quantity (share) information 

should therefore cause discrete choice estimates of MWTP to differ from hedonic estimates. 

Equation (21) helps explain why mean MWTP for winter temperature is higher under the 

discrete choice than the hedonic approach. The city-specific fixed effects from the first stage of 

the conditional logit model with moving costs (the {δj} in equation 20) are more highly 

positively correlated with winter than with summer temperature. This raises MWTP for winter 

temperature in the discrete choice model compared with MWTP from the hedonic model.  

6. Conclusions  

The goal of this paper is to compare the continuous hedonic and discrete choice 

approaches to valuing climate amenities—in particular, summer and winter temperatures. While 

previous comparisons of the two methods have focused on comparing mean MWTP (Cragg and 

Kahn 1997; Bayer et al. 2009) we have focused on comparing how MWTP for small changes in 

winter and summer temperatures vary with a household’s current location. Preferences for 

temperature represent a classic case of taste sorting, and for the purposes of valuing climate 

policies, it is essential to measure how MWTP for temperature varies with geographic location. 

 
39 Specifically, the correlation between {𝛿𝑗}and city population is 0.71. 
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Simply put, the patterns of taste sorting produced by the two approaches are quite 

different. The discrete location choice model suggests that households who live in cities with 

warmer winters place a higher value on warmer winters than households who live in cities with 

colder winter temperatures, although there is variation across cities in MWTP holding 

temperature constant. The continuous hedonic approach using adjusted weights and local linear 

regression suggests the opposite: MWTP for an increase in winter temperature is higher for 

households living in the West North Central census division, where it is very cold, and in the 

Northeast US, than it is in Florida and Texas.  

In terms of summer temperature, the discrete choice approach estimates that climate-

sensitive households in the South Atlantic census division and on the Pacific coast are willing to 

pay the most to lower summer temperature.  Households in the West North Central division are 

willing to pay the least for cooler summers.  In contrast, hedonic local linear regressions with 

adjusted weights suggest that MWTP for cooler summers is negatively correlated with 

temperature at current location: people on the Pacific coast and in the mountain states consider 

warmer summers to be a disamenity, but less so than people living in the South Atlantic, West 

South Central, and East South Central census divisions, who will bear the brunt of hotter 

summers under climate change (Karl et al. 2009).   

There is also a difference in the mean MWTP across models. MWTP for warmer winters 

is lower, on average, in the hedonic model with adjusted weights than in the discrete choice case: 

when taste sorting is allowed, mean MWTP for a 1 degree increase in winter temperature is $175 

with a 95 percent confidence interval of ($124, $203), whereas it is approximately $400 in the 

discrete choice model (model M.2 of Table 5). Mean MWTP to avoid warmer summers is 

approximately the same in the hedonic model with adjusted weights as in the discrete choice 

model, approximately $500 per degree.  

These findings raise an obvious question: Why do results differ across models? Bayer et 

al. (2009) suggest that it is the inclusion of moving costs in the discrete choice model that causes 

their hedonic and discrete choice results to differ.  Including moving costs in the discrete choice 

identifies the sorting patterns in this model, i.e., it causes MWTP for warmer winters to increase 

with winter temperature.  However, removing moving costs does not result in the sorting patterns 

estimated using the hedonic model.    

The hedonic and discrete choice approaches differ in other ways. The construction of 

hedonic QOL indices is based on national labor and housing market equations that assume that 

the returns to human capital and the marginal cost of housing characteristics are everywhere 

equal. The discrete choice approach, in contrast, treats each city as a separate market and allows 
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variation in the returns to human capital and in the marginal price of dwelling characteristics 

across cities to identify household preferences.  Imposing the assumption of national labor and 

housing markets on the discrete choice model does not, however, significantly alter estimates of 

mean MWTP for winter and summer temperature produced by that model.   

A more important difference between the hedonic and discrete choice models is how they 

use information on prices v. quantities.  In the hedonic model wages and housing prices adjust to 

clear the labor and housing markets as households and firms sort across cities.  The discrete 

choice approach uses variation in wages and housing prices across cities to explain the location 

decisions of households, but it also uses information on the number of households selecting each 

city to estimate the model.  The city-specific fixed effects estimated in the first stage of the 

discrete choice model equate the sum of the probabilities of choosing a city to the number of 

persons in the sample who choose the city. In a random sample, this will be proportional to city 

population. When city fixed effects are regressed on amenities in the second stage of estimation 

of the discrete choice model, population is implicitly used to estimate preferences. This is not the 

case for the hedonic model. We show, following Bayer et al. (2007), that the second stage of 

estimation of the discrete choice model, assuming national labor and housing markets, is similar 

to that of the hedonic model, with hedonic prices adjusted for city-specific fixed effects. There is 

therefore no reason why the two approaches should produce identical estimates of mean MWTP 

for city-specific amenities.  

This raises another question: If the hedonic and discrete choice approaches yield different 

results, which approach yields the more reliable estimates of the value of climate amenities for 

use in evaluating climate policy? We believe that several considerations argue in favor of the 

discrete choice approach. As noted above, the discrete choice approach captures the stylized fact 

that the majority of households in the United States live in the same state in which the head of 

household was born. Informational and psychological frictions make households less than 

perfectly mobile. The discrete choice approach also makes use of spatial differences in labor and 

housing markets to identify household preferences, rather than assuming a national labor and 

housing market. 

Finally, the discrete choice approach is more easily able to measure the impact of urban 

amenities on all household groups. The hedonic approach typically focuses on the preferences of 

prime-aged households, since a significant fraction of older households have no wage income. 

But climate benefits accrue to all households.  In Sinha et al. (2018b) we present estimates of the 

discrete choice model for households headed by prime-aged adults, adults over 55, and all 

households with heads 16 years and older. Estimates of MWTP based on all households are 

approximately 40 percent greater than those based on the prime-aged sample. Older households 



30 
 

place a higher value on warmer winters and cooler summers, and it is important to estimate these 

benefits. 
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Table 1. Descriptive Statistics of Household Characteristics 

 

    Full sample   Prime-aged   Greater than 55 

    (N: 54,008)   (N: 33,180)   (N: 17,643) 

Variable Description Mean Std. dev.   Mean Std. dev.   Mean Std. dev. 

Age of household head 
(mean) 

Age 49.11 17.03   40.79 8.20   69.50 9.41 

Gender of household head 
(proportion) 

Male 63.93     67.02     60.60   

Marital status of household 
head (proportion) 

Married 52.22     55.43     50.99   

Race of household head 
(proportions) 

White 82.70     81.13     87.03   

Black 13.11     13.97     10.98   

Other 4.20     4.91     1.99   

Education of household 
head (proportions) 

No high school  12.86     7.56     23.09   

High school  25.96     24.06     29.71   

Some college 30.89     33.73     23.65   

College graduate 19.33     22.67     12.95   

Postgraduate education 10.96     11.99     10.62   

Household head movement 
from place of birth 
(proportions) 

Left state of birth 42.65     40.99     47.32   

Left census division of birth 32.78     31.28     36.86   

Left census region of birth 26.55     24.98     30.85   

Household wage earnings 
(mean) 

Sum of the wage earnings of all 
household members 

$49,960 $54,508   $64,098 $55,106   $26,307 $47,544 

Household wage earnings 
(proportion) 

Households with zero wage 
earnings 

16.75     2.23     46.94   
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    Full sample   Prime-aged   Greater than 55 

    (N: 54,008)   (N: 33,180)   (N: 17,643) 

Variable Description Mean Std. dev.   Mean Std. dev.   Mean Std. dev. 

Total household income 
(mean) 

Sum of wage, business, and farm 
incomes and income from other 
sources of all household membersa 

$63,312 $58,671   $69,161 $59,723   $57,294 $58,615 

Household annual housing 
expenditures (mean) 

Sum of monthly mortgage 
payment or rent, cost of utilities, 
insurance, and property taxes 

$15,556 $9,082   $16,193 $9,437   $15,481 $8,560 

Size of household 
(proportions) 

1 member 26.16     21.05     36.03   

2 members 34.69     27.35     47.68   

3 or more members 39.15     51.59     16.28   

a Income from other sources would include Social Security income; welfare (public assistance) income; Supplementary Security Income; interest, 
dividend, and rental income; retirement income; and other income. 
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Table 2. Descriptive Statistics of Amenity Variables 

Variable N Mean Std. dev. Minimum Maximum Median 

Avg. winter temperature (°F) 284 37.339 12.158 9.442 67.922 34.996 

Avg. summer temperature (°F) 284 73.309 5.817 60.848 89.733 72.517 

Annual snowfall (inches) 284 20.360 21.366 0.000 84.050 18.050 

Summer precipitation (inches) 284 10.966 5.057 0.440 23.300 11.932 

July relative humidity (%) 284 66.246 10.891 22.500 78.000 70.500 

Annual sunshine (% of possible sunshine in 24 hours)  284 60.764 8.323 43.000 78.000 58.000 

Avg. elevation (miles) 284 0.197 0.273 0.000 1.620 0.130 

Distance to coast (miles) 284 141.096 169.592 0.009 824.451 91.025 

Visibility > 10 miles (% of hours) 284 46.053 19.541 5.000 85.500 45.500 

Mean PM2.5 (micrograms/cubic meter) 284 12.829 2.884 5.382 19.535 12.818 

Population density (persons per square mile) 284 471.767 983.041 5.400 13,043.600 259.050 

Violent crime rate (number of violent crimes per 1,000 persons) 284 4.560 2.214 0.069 12.330 4.349 

Park area (square miles) 284 192.908 584.303 0.000 5,477.564 24.893 

Transportation score 284 50.370 29.181 0.000 100.000 50.280 

Education score 284 51.230 29.322 0.000 100.000 51.130 

Arts score 284 51.137 29.055 0.000 100.000 51.140 

Healthcare score 284 49.201 28.657 0.000 98.300 49.430 

Recreation score 284 53.342 28.386 0.000 100.000 54.245 
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Table 3. Hedonic Wage, Housing Cost, and Quality of Life Regressions 

    Wage 
regression 

 
Housing cost 

regression 

 
QOL regression 

Traditional Weights 

 
QOL regression 

Adjusted weights 
    (1) 

 
(2) 

 
(3) 

 
 (4) 

Variable   Coef.  Coef.  Coef.  Coef. 

    (Std. err.)  (Std. err.)  (Std. err.)  (Std. err.) 

Avg. winter temperature   –0.0030  –0.0001  0.0030  0.0015 

    (0.0008)  (0.0020)  (0.0006)  (0.0005) 

Avg. summer temperature   –0.0010  –0.0172  –0.0033  –0.0052 

    (0.0015)  (0.0040)  (0.0010)  (0.0009) 

July humidity   –0.0007  0.0020  0.0012  0.0010 

    (0.0007)  (0.0016)  (0.0005)  (0.0003) 

Annual snowfall   –0.0010  –0.0022  0.0004  –0.0002 

    (0.0003)  (0.0007)  (0.0002)  (0.0002) 

Ln(summer precipitation)   –0.0247  –0.0475  0.0128  –0.0031 

    (0.0111)  (0.0283)  (0.0080)  (0.0067) 

Annual sunshine   0.0004  0.0089  0.0019  0.0028 

    (0.0009)  (0.0022)  (0.0006)  (0.0005) 

No. of obs. (MSAs)   284  284  284  284 

Adjusted R-squared   0.71  0.74  0.50  0.59 

Note: Columns (1) and (2) present the coefficients of the climate amenities when 𝜆𝑊 (col. 1) and 𝜆𝑃  (col. 2) are regressed on the 
amenities in Table 2.    Column (3) and (4) report the coefficients on climate amenities when the QOL index formed using traditional 
weights (col. 3) and adjusted weights (col. 4) are regressed on the amenities in Table 2.   Appendix A.3 reports the complete set of 
regression coefficients. 
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Table 4. Marginal Willingness to Pay for Climate Amenities: Hedonic Models, Heterogeneous Tastes 

 

 

    Winter temperature Summer temperature Correlations 

Weights Bandwidth Mean 
Std. 
dev. 

10th 
pctile 

90th 
pctile 

Mean 
Std. 
dev. 

10th 
pctile 

90th 
pctile 

WT 
MWTP, ST 

MWTP 

WT, ST, 

WT 
MWTP 

ST 
MWTP 

                          

Traditional 0.4 $215  $94  89 337 -346 327 -780 -54 -0.02 0.13 -0.46 

Traditional 0.5 $207  $58  136 281 -329 214 -701 -136 -0.11 0.16 -0.48 

Traditional 0.6 $200  $40  150 253 -306 146 -554 -202 -0.20 0.14 -0.52 

Traditional 0.7 $194  $31  153 235 -283 103 -457 -201 -0.26 0.10 -0.54 

Traditional 0.8 $189  $25  158 222 -261 74 -371 -194 -0.30 0.07 -0.56 

Traditional 0.9 $185  $21  160 211 -243 54 -315 -196 -0.34 0.04 -0.57 

                          

Adjusted  0.4 $203  $123  39 293 -573 290 -889 -326 -0.12 -0.09 -0.41 

Adjusted  0.5 $189  $96  61 262 -558 233 -790 -376 -0.09 -0.19 -0.46 

Adjusted  0.6 $179  $78  68 252 -546 188 -744 -413 -0.11 -0.30 -0.48 

Adjusted  0.7 $174  $68  72 242 -536 156 -718 -428 -0.15 -0.39 -0.50 

Adjusted  0.8 $171  $60  70 231 -529 132 -680 -409 -0.18 -0.46 -0.52 

Adjusted  0.9 $169  $53  83 220 -523 113 -650 -403 -0.18 -0.50 -0.55 

                          

        

Note:  The mean MWTPs reported here are weighted by MSA population.  The standard deviations are standard deviations in MWTP from the 

mean.  All figures, except correlations, are reported in dollars.  
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Table 5. Marginal Willingness to Pay for Climate Amenities: Mixed Logit Models 

  M.1: No tax 
adjustments 

  

M.2: With tax 
adjustments 

  

M.3: No tax 
adjustments + Omit 
moving costs   

M.4: With tax 
adjustments +  
omit moving costs 

Panel A: 1st stage estimates                       

Variable 
Coef. 

(Std. err.) 
    

Coef. 
(Std. err.) 

    
Coef. 

(Std. err.) 
    

Coef. 
(Std. err.) 

  

Std. dev.: avg. winter temperature 0.0588     0.0592     0.0011     0.0032   

  (0.0026)     (0.0026)     (0.0128)     (0.0097)   

Std. dev.: avg. summer temperature 0.0592     0.0612     0.0352     0.0525   

  (0.0068)     (0.0066)     (0.0215)     (0.0174)   

Correlation coefficient –0.6893     –0.6993     0.8614     –0.9433   

  (0.0827)     (0.0776)     (0.2756)     (0.1297)   

Panel B: 2nd stage estimates                       

Variable 
Coef 

(Std. err.) 
MWTP 

(Std. err.) 
  

Coef 
(Std. err.) 

MWTP 
(Std. err.) 

  
Coef 

(Std. err.) 
MWTP 

(Std. err.) 
  

Coef 
(Std. err.) 

MWTP 
(Std. err.) 

Mean: avg. winter temperature 0.0209 $518   0.0210 $382   0.0184 $491   0.0171 $326 

  (0.0058) ($144)   (0.0057) ($104)   (0.0055) ($146)   (0.0055) ($104) 

Mean: avg. summer temperature –0.0253 –$627   –0.0286 –$522   –0.0145 –$386   –0.0178 –$339 

  (0.0100) ($249)   (0.0098) ($180)   (0.0108) ($288)   (0.0110) ($209) 

Note: These models include all amenities listed in Table 2.  Coefficients of other amenities are reported in Table A.5. 
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Figure 1A. Impact of Winter Temperature on QOL Index (Adjusted Weights, Only WT 
Nonparametric) 

 

 

 

 

Figure 1B. Impact of Summer Temperature on QOL Index (Adjusted Weights, Only ST 
Nonparametric) 
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Figure 2A. Impact of Winter Temperature on QOL Index (Traditional Weights, Only WT 
Nonparametric) 

 

 

 

Figure 2B. Impact of Summer Temperature on QOL Index (Traditional Weights, Only ST 
Nonparametric) 
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Figure 3A. MWTP for Winter Temperature as a Function of Winter Temperature  

 

 

Note: The point estimates in this graph represent the proportion of income, measured on the Y-
axis. that would be given up for a 5 degree increase in temperature to the number shown on the 
X-axis.  For example, increasing winter temperature from 10 to 15 degrees is worth 1% of 
income (.01), although the error bars on the graph indicate that this coefficient is not significantly 
different from zero.  An increase in mean winter temperature from 15 to 20 degrees has a point 
estimate of 0.  These effects reported in the graph are averaged across all values of summer 
temperature.  
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Figure 3B. MWTP for Summer Temperature as a Function of Summer Temperature 

 

Note: The point estimates in this graph represent the proportion of income, measured on the Y-
axis. that would be given up for a 5 degree increase in temperature to the value on the X-axis.  
For example, increasing summer temperature from 60 to 65 degrees is worth -2% of income 
(2% of income would be given up to avoid this change), although the error bars on the graph 
indicate that this coefficient is not significantly different from zero.  The value of avoiding an 
increase in mean summer temperature from 65 to 70 is approximately 3% of income.  The 
effects reported in the graph are averaged across all values of winter temperature. 
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Figure 4. Marginal Willingness to Pay for Winter Temperature by Metropolitan Area, Local Linear Hedonic Model, Adjusted 
Weights (bandwidth = 0.7) 
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Figure 5. Marginal Willingness to Pay for Summer Temperature by Metropolitan Area, Local Linear Hedonic Model, Adjusted 
Weights (bandwidth = 0.7) 
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Figure 6A. Marginal Willingness to Pay for Winter Temperature by Metropolitan Area, Discrete Choice Model, No Tax 
Adjustments (Model M.1) 
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Figure 6B. Marginal Willingness to Pay for Winter Temperature by Metropolitan Area, Discrete Choice Model, With Tax 
Adjustments (Model M.2) 
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Figure 7A. Marginal Willingness to Pay for Summer Temperature by Metropolitan Area, Discrete Choice, No Tax 
Adjustments (Model M.1) 
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Figure 7B. Marginal Willingness to Pay for Summer Temperature by Metropolitan Area, Discrete Choice Model, With Tax 
Adjustments (Model M.2) 
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Figure 8. Impact of Removing Moving Costs on Marginal Willingness to Pay for Temperature by Metropolitan Area, With Tax 

Adjustments (Models M.2 and M.3) 
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Appendix 

Table A.1. Summary of Hedonic Wage Coefficients 

  
National 
equation 

  
MSA-specific  

equations (284) 

(Dependent variable: log(wage rate)) Coef.   Mean(Coef.) Std.dev.(Coef.) 

High school (left-out category is no high school) 0.117   0.098 0.038 
Some college 0.212   0.180 0.045 
College graduate 0.418   0.382 0.069 
Higher education 0.577   0.546 0.074 
Age 0.049   0.048 0.007 
Age squared (divided by 100) 0.000   0.000 0.000 
Married 0.093   0.092 0.021 
Male 0.197   0.215 0.040 
Black (left-out category is white) –0.082   –0.070 0.070 
Other race –0.086   –0.055 0.054 
Speaks English well 0.213   0.126 0.103 
Hispanic –0.075   –0.057 0.074 
Business operations occupation (left-out category is 
management occupation) 

–0.120   –0.122 0.067 

Financial specialists occupation –0.139   –0.116 0.072 
Computer and math occupation 0.010   0.004 0.089 
Engineering occupation –0.088   –0.073 0.083 
Life, physical, and social sciences occupation –0.206   –0.180 0.100 
Social services occupation –0.354   –0.328 0.078 
Legal occupation –0.023   –0.039 0.127 
Teachers occupation –0.221   –0.190 0.093 
Other educational occupation –0.502   –0.473 0.129 
Arts, sports, and media occupation –0.220   –0.243 0.094 
Healthcare practitioners occupation 0.025   0.062 0.078 
Healthcare support occupation –0.351   –0.330 0.078 
Protective services occupation –0.257   –0.240 0.106 
Food and serving occupation –0.453   –0.428 0.077 
Maintenance occupation –0.485   –0.472 0.074 
Personal care service occupation –0.435   –0.423 0.114 
High-skill sales occupation –0.154   –0.136 0.067 
Low-skill sales occupation –0.227   –0.228 0.062 
Office support occupation –0.316   –0.298 0.049 
Construction trades and extraction workers 
occupation 

–0.248   –0.246 0.090 

Maintenance workers occupation –0.206   –0.192 0.065 
Production occupation –0.346   –0.317 0.084 
Transportation occupation –0.375   –0.357 0.075 
Construction industry (left-out category is mining 
and utilities)a 

–0.179   –0.180 0.095 

Manufacturing industry –0.127   –0.120 0.107 
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National 
equation 

  
MSA-specific  

equations (284) 

(Dependent variable: log(wage rate)) Coef.   Mean(Coef.) Std.dev.(Coef.) 
Wholesale industry –0.190   –0.185 0.097 
Retail industry –0.344   –0.339 0.094 
Transportation industry –0.111   –0.084 0.107 
Information and communications industry –0.111   –0.134 0.109 
Finance industry –0.151   –0.175 0.105 
Professional and scientific management services 
industry 

–0.197   –0.220 0.101 

Educational and health social services industry –0.280   –0.267 0.092 
Recreation and food services industry –0.352   –0.370 0.110 
Other services industry –0.348   –0.343 0.101 
Public administration industry –0.123   –0.126 0.095 
No. of obs.b 2,916,211   10,268 16,223 
R-squaredb 0.41   0.40 0.03 
a Since these two industries have a very low number of observations, we bundled them together as the 

omitted category. 
b For the MSA-specific regressions, the value in the first column presents the average number of 

observations and average R-squared value across the 284 MSA regressions, while the second column 
presents the standard deviation of the relevant statistic across those regressions. 
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Table A.2. Summary of Hedonic Housing Coefficients 

  
National 
equation 

  MSA-specific equations (284) 

(Dependent variable: log(user costs including 
insurance and utility costs)) 

Coef.   Mean(Coef.) Std.dev.(Coef.) 

House is owned 0.504   0.464 0.144 
3 bedrooms (left-out category is less than 3 
bedrooms) 

0.128   0.160 0.061 

4 bedrooms 0.152   0.208 0.082 
5 bedrooms 0.283   0.324 0.110 
Greater than 5 bedrooms 0.485   0.500 0.163 
2 rooms (left-out category is less than 2 
rooms) 

0.137   0.080 0.133 

3 rooms 0.137   0.053 0.140 
4 rooms 0.166   0.075 0.146 
5 rooms 0.230   0.126 0.154 
6 rooms 0.327   0.218 0.156 
Greater than 6 rooms 0.531   0.413 0.176 
Complete kitchen –0.033   –0.104 0.261 
Complete plumbing 0.219   0.221 0.212 
1 to 10 acres 0.214   0.246 0.140 
0 to 1 years old 0.391   0.428 0.157 
2 to 5 years old 0.371   0.404 0.158 
6 to 10 years old 0.316   0.358 0.150 
11 to 20 years old 0.218   0.247 0.127 
21 to 30 years old 0.110   0.150 0.122 
31 to 40 years old 0.059   0.093 0.113 
41 to 50 years old 0.020   0.039 0.089 
51 to 60 years old (left-out category is over 61 
years old) 

–0.026   –0.011 0.075 

Number of units in structure: single-attached 
(left-out category is single family detached) 

–0.158   –0.082 0.105 

2 units in structure –0.055   –0.089 0.107 
3 to 4 units in structure –0.112   –0.135 0.095 
5 to 9 units in structure –0.139   –0.167 0.106 
10 to 19 units in structure –0.114   –0.132 0.127 
20 to 49 units in structure –0.169   –0.154 0.151 
Over 50 units in structure –0.152   –0.190 0.207 
No. of obs.a 3,255,748   11,464 18,376 
R-squareda 0.57   0.54 0.07 
a For the MSA-specific regressions, the value in the first column presents the average number of 

observations and average R-squared value across the 284 MSA regressions, while the second column 
presents the standard deviation of the relevant statistic across those regressions. 
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Table A.3. Hedonic Wage, Housing Cost, and Quality of Life Regressions (all coefficients) 

    Wage reg.   Housing cost reg.   QOL reg.   QOL reg. 

            traditional weights   adjusted weights 

                  

Variable   Coef.   Coef.   Coef.   Coef. 

    (Std. err.)   (Std. err.)   (Std. err.)   (Std. err.) 

Avg. winter temperature   –0.0030   –0.0001   0.0030   0.0015 

    (0.0008)   (0.0020)   (0.0006)   (0.0005) 

Avg. summer temperature   –0.0010   –0.0172   –0.0033   –0.0052 

    (0.0015)   (0.0040)   (0.0010)   (0.0009) 

July humidity   –0.0007   0.0020   0.0012   0.0010 

    (0.0007)   (0.0016)   (0.0005)   (0.0003) 

Annual snowfall   –0.0010   –0.0022   0.0004   –0.0002 

    (0.0003)   (0.0007)   (0.0002)   (0.0002) 

Ln(summer precipitation)   –0.0247   –0.0475   0.0128   –0.0031 

    (0.0111)   (0.0283)   (0.0080)   (0.0067) 

Annual sunshine   0.0004   0.0089   0.0019   0.0028 

    (0.0009)   (0.0022)   (0.0006)   (0.0005) 

Ln(population density)   0.0504   0.1302   –0.0179   0.0173 

    (0.0069)   (0.0168)   (0.0049)   (0.0039) 

Mean PM2.5   0.0036   –0.0076   –0.0056   –0.0044 

    (0.0018)   (0.0042)   (0.0014)   (0.0011) 

Violent crime rate   0.0019   –0.0096   –0.0043   –0.0042 

    (0.0019)   (0.0043)   (0.0017)   (0.0013) 

Transportation score   –0.0007   –0.0015   0.0003   –0.0001 

    (0.0002)   (0.0005)   (0.0001)   (0.0001) 

Education score   0.0000   0.0000   0.0000   0.0000 

    (0.0002)   (0.0006)   (0.0001)   (0.0001) 
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    Wage reg.   Housing cost reg.   QOL reg.   QOL reg. 

            traditional weights   adjusted weights 

                  

Variable   Coef.   Coef.   Coef.   Coef. 

    (Std. err.)   (Std. err.)   (Std. err.)   (Std. err.) 

Arts score   0.0007   0.0013   –0.0004   0.0001 

    (0.0003)   (0.0006)   (0.0002)   (0.0001) 

Healthcare score   0.0002   0.0013   0.0002   0.0003 

    (0.0002)   (0.0004)   (0.0001)   (0.0001) 

Recreation score   0.0005   0.0009   –0.0002   0.0001 

    (0.0002)   (0.0005)   (0.0002)   (0.0001) 

Park area   0.0000   0.0000   0.0000   0.0000 

    (0.0000)   (0.0000)   (0.0000)   (0.0000) 

Visibility > 10 miles   0.0016   0.0024   –0.0010   0.0000 

    (0.0004)   (0.0009)   (0.0003)   (0.0002) 

Ln(elevation)   –0.0019   0.0035   0.0027   0.0021 

    (0.0056)   (0.0125)   (0.0043)   (0.0032) 

Distance to coast   –0.0006   –0.0011   0.0003   –0.0001 

    (0.0001)   (0.0002)   (0.0001)   (0.0001) 

(Distance to coast)^2   0.0000   0.0000   0.0000   0.0000 

    (0.0000)   (0.0000)   (0.0000)   (0.0000) 

No. of obs. (MSAs)   284   284   284   284 

Adjusted R-squared   0.71   0.74   0.50   0.59 

Note: MWTP is computed at mean household income for the prime-aged sample ($69,161). When entering the regressions nonlinearly, 
amenity variables are evaluated at population-weighted means in order to compute MWTP. Nonlinear covariates are as follows: population 
density, summer precipitation, and elevation enter in log form, while distance to the coast enters the model quadratically. 
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Table A.4. Coefficients for All Location-Specific Amenities, Semipar Hedonic Models 

 

   Adjusted hedonic weights   Traditional hedonic weights 

Temperature specification Flexible WT   Flexible ST   Flexible WT   Flexible ST 

                

Variable Coef. Std. err.   Coef. Std. err.   Coef. Std. err.   Coef. Std. err. 

                        

Avg. winter temperature       0.00253 0.00056         0.00253 0.00072 

Avg. summer temperature -0.00530 0.00092         -0.00342 0.00117       

July humidity 0.00109 0.00040   0.00108 0.00037   0.00095 0.00050   0.00113 0.00048 

Annual snowfall -0.00013 0.00022   -0.00043 0.00022   0.00066 0.00028   0.00024 0.00029 

Ln(summer precipitation) -0.00247 0.00647   -0.00225 0.00619   0.01542 0.00817   0.01139 0.00801 

Annual sunshine 0.00276 0.00057   0.00180 0.00059   0.00196 0.00072   0.00098 0.00077 

Ln(population density) 0.01487 0.00348   0.01746 0.00331   -0.01893 0.00439   -0.01714 0.00428 

Mean PM2.5 -0.00460 0.00125   -0.00669 0.00135   -0.00544 0.00158   -0.00611 0.00174 

Violent crime rate -3.79723 1.22557   -3.60350 1.20390   -4.56958 1.54697   -4.56983 1.55848 

Transportation score -0.00016 0.00012   -0.00010 0.00011   0.00036 0.00015   0.00034 0.00015 

Education score 0.00004 0.00011   0.00000 0.00011   0.00002 0.00014   0.00002 0.00015 

Arts score 0.00008 0.00013   0.00009 0.00013   -0.00035 0.00016   -0.00039 0.00016 

Healthcare score 0.00035 0.00010   0.00033 0.00009   0.00017 0.00012   0.00021 0.00012 

Recreation score 0.00011 0.00012   0.00004 0.00012   -0.00025 0.00015   -0.00023 0.00015 

Park area 0.00000 0.00000   0.00000 0.00000   -0.00002 0.00001   -0.00001 0.00001 

Visibility > 10 miles 0.00003 0.00024   -0.00009 0.00023   -0.00098 0.00030   -0.00073 0.00030 

Ln(elevation) 0.00222 0.00302   0.00170 0.00283   0.00036 0.00381   0.00572 0.00367 

Distance to coast -0.00006 0.00006   0.00001 0.00004   0.00033 0.00007   0.00015 0.00005 

(Distance to coast)^2 0.00000 0.00000   0.00000 0.00000   0.00000 0.00000   0.00000 0.00000 

No. of obs. (MSAs) 284     284     284     284   

Adjusted R-squared 0.57     0.54     0.46     0.37   
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Table A.5. MWTP for All Location-Specific Amenities, Mixed Logit Models 
  

                
  No tax adjustments 

  

With tax 
adjustments 

  

No tax adjustments + 
omit moving costs 

  

With tax 
adjustments +  

omit moving costs 
Panel A: 1st stage estimates                       

Variable 
Coef 
(Std. 
err.) 

    
Coef 
(Std. 
err.) 

    
Coef 
(Std. 
err.) 

    
Coef 
(Std. 
err.) 

  

Std. dev.: avg. winter temperature 0.0588     0.0592     0.0011     0.0032   
  (0.0026)     (0.0026)     (0.0128)     (0.0097)   
Std. dev.: avg. summer temperature 0.0592     0.0612     0.0352     0.0525   
  (0.0068)     (0.0066)     (0.0215)     (0.0174)   
Correlation coefficient –0.6893     –0.6993     0.8614     –0.9433   
  (0.0827)     (0.0776)     (0.2756)     (0.1297)   
                        
Panel B: 2nd stage estimates                       

Variable 
Coef 
(Std. 
err.) 

MWTP 
(Std. 
err.) 

  
Coef 
(Std. 
err.) 

MWTP 
(Std. 
err.) 

  
Coef 
(Std. 
err.) 

MWTP 
(Std. 
err.) 

  
Coef 
(Std. 
err.) 

MWTP 
(Std. 
err.) 

Mean: avg. winter temperature 0.0209 $518   0.0210 $382   0.0184 $491   0.0171 $326 
  (0.0058) ($144)   (0.0057) ($104)   (0.0055) ($146)   (0.0055) ($104) 
Mean: avg. summer temperature –0.0253 –$627   –0.0286 –$522   –0.0145 –$386   –0.0178 –$339 
  (0.0100) ($249)   (0.0098) ($180)   (0.0108) ($288)   (0.0110) ($209) 
July humidity –0.0208 –$514   –0.0198 –$360   –0.0165 –$440   –0.0156 –$296 
  (0.0054) ($135)   (0.0052) ($95)   (0.0046) ($124)   (0.0045) ($85) 
Annual snowfall –0.0170 –$422   –0.0176 –$321   –0.0047 –$126   –0.0052 –$99 
  (0.0026) ($66)   (0.0026) ($49)   (0.0025) ($67)   (0.0025) ($48) 
Ln(summer precipitation) 0.1708 $403   0.1517 $264   0.0678 $172   0.0593 $107 
  (0.0768) ($181)   (0.0752) ($131)   (0.0732) ($186)   (0.0727) ($132) 
Annual sunshine –0.0149 –$368   –0.0125 –$229   –0.0082 –$219   –0.0040 –$75 
  (0.0060) ($149)   (0.0059) ($108)   (0.0060) ($159)   (0.0059) ($111) 
Ln(population density) 0.2094 $6   0.2559 $5   0.2891 $8   0.3361 $7 
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  (0.0494) ($1)   (0.0505) ($1)   (0.0441) ($1)   (0.0453) ($1) 
Mean PM2.5 0.0572 $1,416   0.0553 $1,009   0.0546 $1,454   0.0543 $1,032 
  (0.0164) ($408)   (0.0164) ($301)   (0.0153) ($410)   (0.0153) ($291) 
Violent crime rate 0.0006 $15   –0.0018 –$33   –0.0117 –$312   –0.0142 –$270 
  (0.0142) ($352)   (0.0141) ($258)   (0.0150) ($400)   (0.0150) ($286) 
Transportation score 0.0105 $259   0.0099 $180   0.0112 $298   0.0106 $202 
  (0.0015) ($39)   (0.0015) ($28)   (0.0015) ($41)   (0.0015) ($29) 
Education score 0.0043 $106   0.0041 $76   0.0035 $92   0.0033 $63 
  (0.0016) ($41)   (0.0016) ($30)   (0.0016) ($43)   (0.0016) ($30) 
Arts score 0.0043 $106   0.0047 $86   0.0034 $90   0.0037 $71 
  (0.0018) ($46)   (0.0019) ($34)   (0.0016) ($42)   (0.0016) ($30) 
Healthcare score 0.0002 $4   0.0008 $14   0.0002 $6   0.0008 $15 
  (0.0012) ($31)   (0.0012) ($23)   (0.0012) ($32)   (0.0012) ($23) 
Recreation score 0.0124 $307   0.0126 $229   0.0120 $320   0.0122 $232 
  (0.0016) ($41)   (0.0016) ($30)   (0.0016) ($42)   (0.0016) ($30) 
Park area 0.0001 $4   0.0002 $3   0.0001 $3   0.0001 $2 
  (0.0001) ($1)   (0.0001) ($1)   (0.0000) ($1)   (0.0000) ($1) 
Visibility > 10 miles 0.0073 $180   0.0081 $147   0.0009 $24   0.0011 $22 
  (0.0033) ($82)   (0.0033) ($61)   (0.0035) ($92)   (0.0035) ($66) 
Ln(elevation) 0.0895 $12,450   0.0935 $9,578   0.1145 $17,142   0.1166 $12,454 
  (0.0481) ($6,706)   (0.0477) ($4,891)   (0.0415) ($6,234)   (0.0411) ($4,404) 
Distance to coast –0.0020 –$25   –0.0023 –$25   –0.0012 –$19   –0.0014 –$18 
  (0.0007) ($14)   (0.0007) ($10)   (0.0008) ($15)   (0.0008) ($11) 
(Distance to coast)^2 0.0000     0.0000     0.0000     0.0000   
  (0.0000)     (0.0000)     (0.0000)     (0.0000)   
No. of obs. (MSAs) 284     284     284     284   
Adjusted R-squared 0.82     0.83     0.82     0.83   

Note: When entering the regressions nonlinearly, amenity variables are evaluated at population-weighted means in order to compute MWTP. 
Nonlinear covariates are as follows: population density, summer precipitation, and elevation enter in log form, while distance to the coast 
enters the model quadratically. 
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Table A.6. MWTP for Climate Amenities, Mixed Logit Models (sensitivity to specification of utility function) 

      

                                           No tax  
                                   adjustments 

 
 Quadratic 
Hicksian 
bundle 

 
Cobb-Douglas utility 
Log(wage) in 1st stage with 
housing price index in 2nd stage 

  

  Panel A: 1st stage  
estimates 

 
 

  
  

  Variable Coef 
(Std. 
err.) 

    Coef 
(Std. 
err.) 

    Coef 
(Std. 
err.) 

    

  Std. dev.: avg. winter 
temperature 

0.0588     0.0584     0.0603     

    (0.0026)     (0.0026)     (0.0025)     
  Std. dev.: avg. summer 

temperature 
0.0592     0.0572     0.0555     

    (0.0068)     (0.0069)     (0.0070)     
  Correlation coefficient –0.6893     –0.7007     –0.7624     
    (0.0827)     (0.0863)     (0.0851)     
                      
  Panel B: 2nd stage 

estimates 
                  

  Variable Coef 
(Std. 
err.) 

MWTP 
(Std. 
err.) 

  Coef 
(Std. 
err.) 

MWTP 
(Std. 
err.) 

  Coef 
(Std. 
err.) 

MWTP 
(Std. err.) 

  

  Mean: avg. winter 0.0209 $518   0.0218 $463   0.0190 $590   
   temperature (0.0058) ($144)   (0.0058) ($126)   (0.0059) ($184)   
  Mean: avg. summer  –0.0253 –$627   –0.0266 –$566   –0.0208 –$644   
   temperature (0.0100) ($249)   (0.0099) ($214)   (0.0102) ($317)   

  
Note:  All models are estimated using income before taxes.  
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Figure A.1. Marginal Willingness to Pay for Winter Temperature by Metropolitan Area, Local Linear Hedonic Model, Adjusted 
Weights (various bandwidths) 
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Figure A.2. Marginal Willingness to Pay for Summer Temperature by Metropolitan Area, Local Linear Hedonic Model, 
Adjusted Weights (various bandwidths) 
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Figure A.3. Marginal Willingness to Pay for Winter Temperature by Metropolitan Area, Local Linear Hedonic Model, 
Traditional Weights (various bandwidths) 
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Figure A.4. Marginal Willingness to Pay for Summer Temperature by Metropolitan Area, Local Linear Hedonic Model, 
Traditional Weights (various bandwidths) 
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